Biomimetic Synthesis of the Pentacyclic Nucleus of Ptilomycalin A

Barry B. Snider* and Zhongping Shi
Contribution from the Department of Chemistry, Brandeis University, P.O. Box 9110 , Waltham, Massachusetts 02254

Received September 7, 1993*

Abstract

The methylester of the pentacyclic nucleus of ptilomycalin A (9) has been prepared by an efficient, convergent, biogenetic, 14 -step route. The key steps involve the conversion of acyclic bis enone 39 to 9 in four steps. Michael addition of O-methylisourea to 39 afforded 52% of a mixture of isoureas 40 and 41 , which were both converted to 72% of tricyclic aminals $\mathbf{4 2}$ and $\mathbf{4 3}$ by ammonolysis. Deprotection of the silyl ethers with HF and cyclization with $\mathrm{Et}_{3} \mathrm{~N}$ in MeOH afforded $9(\approx 34 \%$ from 42) and the diastereomer 45 with an equatorial methyl ester group ($\approx 26 \%$ from 42).

Introduction

The structurally novel, cytotoxic, antifungal, antimicrobial, and antiviral guanidine alkaloid ptilomycalin A (1) was isolated from the Caribbean sponge Ptilocaulis spiculifer and from a red Hemimycale spiculifer of the Red Sea in 1989. ${ }^{1}$ The closely related antiviral and cytotoxic crambescidins were isolated from the red, encrusting Mediterranean sponge Crambe crambe in 1991. ${ }^{2}$ The crambescidins have the same pentacyclic guanidine moiety with an additional hydroxy group on the side chain in crambescidin 800 (2) and on both the ring and side chain in other congeners. The relative stereochemistry of the pentacyclic core of $\mathbf{1}$ and 2 was determined by extensive NMR spectral investigations. ${ }^{1}$ The absolute stereochemistry has recently been shown to be that depicted in 1 and 2 by degradation to (S)-2hydroxybutanoic acid. $2 \mathrm{~b}, \mathrm{c}$

Ptilomycalin A (1) shows cytotoxicity against P388, L1210, and KB cells with $\mathrm{IC}_{50}=0.1,0.4$, and $1.3 \mu \mathrm{~g} / \mathrm{mL}$, respectively, and antifungal and antimicrobial activity against Candida albicans (MIC $=0.8 \mu \mathrm{~g} / \mathrm{mL}$) as well as antiviral activity (HSV) at $0.2 \mu \mathrm{~g} / \mathrm{mL} .{ }^{1}$ The crambescidins inhibit HSV- 1 completely at $1.25 \mu \mathrm{~g} / \mathrm{mL}$ and are 98% effective against L1210 cell growth at $0.1 \mu \mathrm{~g} / \mathrm{mL} .^{2}$

We were fascinated by the possibility of an efficient synthetic approach to ptilomycalin A (1) based on the addition of guanidine to the double Michael acceptor 3 followed by imine and then aminal formation to give the pentacyclic framework of 1 in a single step. This strategy was especially appealing since it might be related to the biogenesis of ptilomycalin A. The initial justification for this approach came from our synthesis of ptilocaulin, which was also isolated from Ptilocaulis spiculifer, ${ }^{3}$ by Michael addition of guanidine to an enone followed by intramolecular enamine formation. ${ }^{4}$

[^0]
Scheme 1

The related bicyclic guanidine alkaloid crambine $B(8)$ was also isolated from Crambe crambe in 1990.5 We recently reported a biomimetic synthesis of the methyl ester of the bicyclic moiety of crambine B (7) and the alkaloid itself. ${ }^{6}$ A major purpose of this synthesis was to develop procedures that could be used for the synthesis of ptilomycalin A (1). Addition of guanidine to enone 4 did not give the desired adduct 6 a resulting from Michael addition and enamine formation. Instead, Michael addition was followed by attack of the guanidine on the ester to form a tetrahydropyrimidinone as the only product. ${ }^{6}$ Fortunately, a twostepalternative route was successful. Addition of O-methylisourea to 4 in DMF for 12 h at $60^{\circ} \mathrm{C}$ afforded 79% of the desired dihydropyrimidine 5 a . Hydrolysis of the silyl ether provided $\mathbf{5 b}$, which reacted with $\mathrm{NH}_{4} \mathrm{OAc}$ in MeOH saturated with anhydrous ammonia at $60^{\circ} \mathrm{C}$ for 2 d to yield $\mathbf{6 b}(61 \%)$ and 37% of a $10: 6: 1$ mixture of 7 and two stereoisomers. Heating 6 b with $\mathrm{Et}_{3} \mathrm{~N}$ in $\mathrm{CHCl}_{3}\left(12 \mathrm{~h}, 60^{\circ} \mathrm{C}\right)$ gave 94% of a $20: 2: 1$ mixture of 7 and the same two diastereomers.

[^1]
Scheme 2

2D-NMR ROESY experiments on these three stereoisomers established that 7 has the stereochemistry shown. ${ }^{6}$ The similarity of the spectra of 7 and crambine B established that crambine B (8) has the same stereochemistry as 7 , rather than that of the diastereomer originally reported. ${ }^{5}$ The stereochemistry of the three chiral centers in the revised structure of crambine $\mathbf{B ~ (8) ~ i s ~}$ the same as that of $\mathrm{C}_{13}, \mathrm{C}_{14}$, and C_{15} in ptilomycalin A (1).

We revised our approach to the pentacyclic portion of ptilomycalin A on the basis of the successful three-step route to the bicyclic guanidine moiety 7 of crambine B (8). Reaction of O-methylisourea with 14 should result in double Michael addition and condensation with the β-keto ester, as observed in the formation of 5 a, to form dihydropyrimidine 13. As observed in the formation of 6 b , reaction of 13 with NH_{3} and $\mathrm{NH}_{4} \mathrm{OAc}$ should convert the isourea to tricyclic guanidine 12, which will spontaneously form aminal 11. Finally, deprotection should give tetracyclic intermediate 10, which should cyclize selectively on treatment with $\mathrm{Et}_{3} \mathrm{~N}$ in CHCl_{3} to give 9, the methyl ester of the pentacyclic nucleus of ptilomycalin A(1), in a process that parallels the stereoselective cyclization of $\mathbf{6 b}$ to give 7 , the bicyclic moiety of crambine $B(8) .{ }^{6}$ While our successful synthesis of crambine B provides a firm foundation for this approach to ptilomycalin A, the need to form five rings from 14 while controlling the stereochemistry at five chiral centers makes this a very challenging problem.

Results and Discussion

Synthesis of the Central Tricyclic Moiety of Ptilomycalin A. Our synthesis of crambine B suggested that the desired double Michael addition to 14 could be carried out with O-methylisourea and that the cyclization of 10 with $\mathrm{Et}_{3} \mathrm{~N}$ would introduce the fifth ring with the correct stereochemistry. However, questions remained about the stereochemistry of the double Michael addition reaction to give 13 and the stereochemistry of the aminal center in 10. We therefore undertook a model study leading to the central tricyclic portion 24 of ptilomycalin A, to demonstrate that the proposed conversion of 14 to 9 is viable. ${ }^{7.8}$ We chose to prepare 20 , a simpler analog of 14 with the same carbon skeleton but lacking the cis double bond and the stereochemical and protection problems associated with the two secondary hydroxyl groups of 14.

Addition of the lithium acetylide prepared from 15^{9} and n-butyllithium at $-78^{\circ} \mathrm{C}$ to octanal afforded 92% of propargyl alcohol 16. Lithium aluminum hydride (1.3 equiv, THF, 5 h , reflux) reduced the propargyl alcohol and cleaved the silyl ether affording 95% of diol 17 . Swern oxidation of diol 17 provided

[^2]
Scheme 3

9

12
NH_{3} $\mathrm{NH}_{4} \mathrm{OAC}$
11

13

94% of keto aldehyde 18. Knoevenagel condensation ${ }^{10}$ of 18 with $19{ }^{11}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cat. piperidine, $\left.2 \mathrm{~d},-20^{\circ} \mathrm{C}\right)$ gave $61 \%(89 \%$ based on recovered 18) of bis enone 20 as a $1: 1$ mixture of E, E - and E, Z-stereoisomers. ${ }^{12}$

Double Michael addition and enamine formation proceeded as expected. Heating bis enone 20 with O-methylisoureido sulfate ${ }^{13}$ (2 equiv) and NaHCO_{3} (4 equiv) in DMF at $50^{\circ} \mathrm{C}$ for 2 h afforded 56% of a $3: 1$ mixture of the trans-isomer 21 and the cis-isomer 22. The pure stereoisomers can be obtained by careful flash chromatography. The stereochemistry of these compounds was established by ROESY experiments. ${ }^{14 \mathrm{a}}$ There was a weak cross peak between H_{10} and H_{13} in the cis-isomer 22 and a strong cross peak between H_{13} and H_{9} in the trans-isomer 21. The formation of trans-isomer 21 as the major product is consistent with MM2 ${ }^{14 \mathrm{~b}}$ calculations that 21 is $2 \mathrm{kcal} /$ mol more stable than cis-isomer 22.

We were delighted to find that both bicyclic stereoisomers 21 and 22 can be converted to the tricyclic target 24 and that the aminal at C_{8} forms spontaneously. Heating a solution of the $3: 1$ mixture of 21 and 22 with excess $\mathrm{NH}_{4} \mathrm{OAc}$ in MeOH saturated with anhydrous NH_{3} for 4 d at $60^{\circ} \mathrm{C}$ in a sealed tube afforded 60% of methyl aminal 24a as the only isolable product. Both

[^3]
Scheme 4

stereoisomers must be converted to 24a since the starting material contains only 25% of the cis-isomer 22. This was confirmed by carrying out the reaction on the purified stereoisomers. Cisisomer 22 provided 75% of 24a, while trans-isomer 21 afforded 55% of 24 a .

The stereochemistry of 24a was established by a strong ROESY cross peak between H_{10} and H_{13}. The absence of a ROESY cross peak between H_{10} and H_{7} established the stereochemistry at the anomeric center. MM2 ${ }^{14 b}$ calculations indicate that cis-isomer $\mathbf{2 4 a}$ is $3 \mathrm{kcal} / \mathrm{mol}$ more stable than the tricyclic trans-isomer. This stability order is opposite to that with the bicyclic isoureas in which the trans-isomer 21 is calculated to be $2 \mathrm{kcal} / \mathrm{mol}$ more stable than the cis-isomer 22. The formation of 24a from the trans-isomer 21 indicates that the stereochemistry at C_{10} can equilibrate, most likely by a retro-Michael reaction to regenerate the enone. Since the trans-isomer 21 is more stable, this equilibration is driven by the formation of the more stable cistricyclic aminal. Therefore this equilibration must be able to occur after formation of the guanidine 23. Treatment of isourea 21 with $\mathrm{Et}_{3} \mathrm{~N}$ in MeOH at $60^{\circ} \mathrm{C}$ results in some decomposition but provided a $3: 1$ mixture of 21 and 22, indicating that equilibration of the isoureas is also possible.

The anomeric substituent also undergoes facile equilibration suggesting that 11 will form tetracyclic intermediate 10 readily. Flash chromatography of 24a resulted in partial hydrolysis of the aminal, leading to a mixture of 24a and hemiaminal 24b. Methyl aminal 24a was hydrolyzed quantitatively to hemiaminal 24 b in 50% aqueous THF. Hemiaminal 24b was reconverted quantitatively to aminal 24a in methanol at room temperature for 4 h .

We briefly examined the reaction of 20 with guanidine and found that 24 was not formed and no methyl ester was present in the crude reaction mixture, probably due to the strong basicity of guanidine. The major product appears to be a tetrahydro-

Scheme 5 ${ }^{\text {a }}$

${ }^{a}$ (a) BuLi, THF/DMPU, $-78^{\circ} \mathrm{C}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$ (94\%); (b) Swern ox (91%); (c) 9 -BBN, α-pinene, room temperature, 30 h ($95 \%, 93 \% \mathrm{ee}$); (d) H_{2}, Lindlar catalyst, room temperature, $1 \mathrm{~h}(98 \%)$; (e) TBDPSiCl, DMAP, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temperature, 20 h (93%); (f) PPTS, EtOH, room temperature, $40 \mathrm{~h}(90 \%$); (g) Swern ox, acetylide prepared from 15, BuLi, THF/DMPU, $-78{ }^{\circ} \mathrm{C}$ (92\%); (h) LAH, THF, reflux, 4 h (85\%); (i) Swern ox (96\%).
pyrimidinone analogous to that formed from guanidine and crambine intermediate $4 .{ }^{6}$
Synthesis of the Pentacyclic Nucleus of Ptilomycalin A. The successful preparation of the central tricyclic portion 24 of ptilomycalin A from 20 in two steps suggested that the proposed route from 14 to the pentacyclic nucleus of ptilomycalin A 9 was viable. Five new stereocenters will be introduced in the conversion of 14 to 9 , making this a much more difficult problem than the preparation of the tricyclic model 24 , which contains only three chiral centers. From our model studies, we anticipated that 11 would be formed as a 1:1 mixture of diastereomers both with H_{10} and H_{13} cis. We did not view this a serious flaw in the synthesis design, since we were confident that steric interactions between the ethyl and methyl substituents would preclude the formation of the pentacyclic bis aminal from the undesired diastereomer, thereby facilitating isomer separation at the end of the synthesis.
Scalemic keto aldehyde 33 was prepared in nine steps from 15 as shown in Scheme 5. Addition of the lithium acetylide prepared from 15^{9} to propanal afforded racemic propargyl alcohol $\mathbf{2 5}$ (94%), which was converted to the S-isomer 27 by a two-step sequence. Swern oxidation gave ketone 26; asymmetric reduction with B-3-pinanyl-9-BBN by Midland's procedure afforded (S)-propargyl alcohol 27 in 93% ee. ${ }^{15}$ The S-configuration was assigned on the basis of literature precedent. ${ }^{15}$ The ee was determined by preparation of the Mosher ester. ${ }^{16}$ Reduction of $\mathbf{2 7}$ over Lindlar catalyst (98%), tert-butyldiphenylsilylation (93%), and cleavage of the tert-butyldimethylsilyl ether (90%) afforded cis-allylic silyl ether 30. Swern oxidation of 30 afforded an aldehyde that was treated with the lithium acetylide prepared from 15^{9} to provide propargyl alcohol 31 (92%). LAH reduced the propargyl alcohol and cleaved the silyl ether affording diol 32 (85%). Swern oxidation provided keto aldehyde 33 (96%).
Scalemic β-keto ester was prepared in five steps as shown in Scheme 6. R-alcohol 34 was converted to 37 by tert-butyldiphenylsilylation (95\%), , ${ }^{17}$ DIBAL reduction (66%), ${ }^{18}$ tosylation, and iodide displacement (91%). ${ }^{19}$ Alkylation of the dianion ${ }^{11}$ of methyl acetoacetate with 37 afforded 66% of 38 .
Preparation of the key acyclic intermediate 39 by a Knoevenagel condensation ${ }^{10}$ was much more challenging than the preparation

[^4]
Scheme 6^{8}

${ }^{a}$ (a) TBDPSiCl, imidazole, DMF, room temperature, 3 h (95\%); (b) DIBAL, hexane, $12 \mathrm{~h},-20^{\circ} \mathrm{C}(66 \%)$; (c) TsCl , pyridine, $-20^{\circ} \mathrm{C}, 12 \mathrm{~h}$; NaI, acetone, reflux, 1 h (91%); (d) 2 equiv of LDA then methyl acetoacetate, THF, $0^{\circ} \mathrm{C}$, then 37 , room temperature, $2 \mathrm{~h}(66 \%)$.
of model compound 20, which lacked the two silyl ether substituents. Attempted piperidine or piperidinium acetate catalyzed condensation of 33 and 38 at $0^{\circ} \mathrm{Cor}$ higher temperatures in a variety of solvents resulted in the formation of $<30 \%$ of 39 and destruction of aldehyde 33. Bis enone ester 39 was finally prepared in 64% yield ($1: 1$ mixture of stereoisomers, ${ }^{12} 86 \%$ based on recovered 33, 94% based on recovered 38) by Knoevenagel condensation in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ containing a catalytic amount of piperidine (or piperidinium acetate) at low temperature (-78 to $-20^{\circ} \mathrm{C}, 20 \mathrm{~h}$).

The addition of O-methylisourea to Michael addition acceptor 39 under the reaction conditions used in the model study for the conversion of 20 to dihydropyrimidines 21 and 22 (O-methylisoureido sulfate, $\mathrm{NaHCO}, \mathrm{DMF}, 50^{\circ} \mathrm{C}, 2 \mathrm{~h}$) gave $<5 \%$ of the desired dihydropyrimidines $\mathbf{4 0}$ and 41 . The ${ }^{1} \mathrm{H}$ NMR spectra of the crude reaction mixture indicated the presence of little methyl ester, suggesting that the ester had reacted with the isourea. Similar results were obtained with the analogous tert-butyl ester, indicating that use of a more hindered ester does not solve this problem. The double Michael reaction with 39 was also unsuccessful using $\mathrm{NaOAc}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{NaHCO}_{3}$, or $i-\mathrm{Pr}_{2} \mathrm{EtN}$ as base in $\mathrm{MeOH}, \mathrm{EtOH}, t-\mathrm{BuOH}, \mathrm{THF}, \mathrm{Me}_{2} \mathrm{CO}, \mathrm{PhMe}$, or DMF. The desired double Michael addition and enamine formation from 39 was finally accomplished in DMSO [O-methylisoureido sulfate (5 equiv), $i-\mathrm{Pr}_{2} \mathrm{EtN}$ (2.5 equiv), DMSO, $80^{\circ} \mathrm{C}, 1.5 \mathrm{~h}$] to afford 52% of a $4: 1$ mixture of the two trans-diastereomers 40 and the two cis-diastereomers 41. The stereochemistry of 40 and 41 was assigned by the similarity of their ${ }^{1} \mathrm{H}$ NMR spectra to those of the model compounds 21 and 22. For instance, H_{10} absorbs at $\delta 4.3-4.5$ in the cis fused isomers 21 and 40 and at $\delta 4.1-4.2$ in the trans fused isomers 22 and 41.

Although 40 and 41 can be separated chromatographically, this is not necessary since both are converted to an inseparable 1:1 mixture of $\mathbf{4 2}$ and $\mathbf{4 3}$ in $\mathbf{7 2 \%}$ yield on treatment with excess $\mathrm{NH}_{4} \mathrm{OAc}$ in anhydrous t - BuOH saturated with anhydrous NH_{3} for 40 h at $60^{\circ} \mathrm{C}$ in a sealed tube. Once again the stereochemistry was assigned by analogy to the model compound 24.

Deprotection of the tert-butyldiphenylsilyl ethers without decomposition was eventually accomplished by treatment of 42 and 43 with a $1: 2$ mixture of 50% aqueous hydrofluoric acid and acetonitrile for 3 d at $-30^{\circ} \mathrm{C},{ }^{20}$ affording a more polar complex mixture. ${ }^{21}$ The protocol used for conversion of 6 b to 7 in the crambine synthesis $\left(\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CHCl}_{3} \text {, reflux, } 16 \mathrm{~h}\right)^{6}$ converted this polar mixture mainly to 45 and another isomer with a H_{13} and H_{14} trans diaxial ($\delta 2.70, \mathrm{~d}, 1, J=11.5, \mathrm{H}_{14}$) on the six-membered ring. ${ }^{22}$ Similar results were obtained in toluene, THF, and $1: 1$ toluene- MeOH . Treatment of the crude mixture with $\mathrm{Et}_{3} \mathrm{~N}$ in MeOH at $60^{\circ} \mathrm{C}$ for 16 h led to 60% of a $\approx 65 \%$ pure $1.3: 1$ mixture of the methyl ester of the pentacyclic core of ptilomycalin A (9)

[^5]Scheme 7^{2}

43, $\mathrm{R}=$ TBDPS; $\mathrm{H}_{10}, \mathrm{H}_{13}$ cis, α

a (a) Piperidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C} \rightarrow-20^{\circ} \mathrm{C}, 20 \mathrm{~h}(64 \%,>86 \%$ based on recovered 33 and 38); (b) O-methylisourea, i - $\mathrm{Pr}_{2} \mathrm{EtN}, \mathrm{DMSO}, 80^{\circ} \mathrm{C}$, $1.5 \mathrm{~h}\left(52 \%, 4: 1\right.$ 40:41); (c) $\mathrm{NH}_{3}, \mathrm{NH}_{4} \mathrm{OAc}, t$ - $\mathrm{BuOH}, 60^{\circ} \mathrm{C}, 40 \mathrm{~h}(72 \%$, 1:1 42:43); (d) 3:7 HF-CH3 $\mathrm{CN},-30^{\circ} \mathrm{C}, 3 \mathrm{~d}$; (e) $\mathrm{Et} 3 \mathrm{~N}, \mathrm{MeOH}, 60^{\circ} \mathrm{C}$, $20 \mathrm{~h}\left(\approx 78 \%\right.$ from 42, 1.3:1 9:45); (f) $\mathrm{Et}_{3} \mathrm{~N}, 1: 1 \mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}, 6{ }^{\circ} \mathrm{C}, 16$ h.
and the diastereomer 45 with an equatorial methyl ester. This corresponds to a 78% yield of 9 and 45 from the desired diastereomer 42 in the $1: 1$ mixture. The remaining, more polar material was presumably tri- and tetracyclic compounds from the undesired diastereomer 43 and some 44. Careful flash chromatography separated 9 and $\mathbf{4 5}$ but gave only $80-85 \%$ pure material.

Purification was best accomplished by treating the 1.3:1 mixture of 9 and 45 with $\mathrm{Et}_{3} \mathrm{~N}$ in $1: 1 \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ at $60^{\circ} \mathrm{C}$ for 16 h to give tetracyclic alcohol 44 , which was purified by flash chromatography and recyclized with $\mathrm{Et}_{3} \mathrm{~N}$ in MeOH to give a 1.3:1 mixture of 9 and 45 , which were separated to give pure $9(\approx 34 \%$ from 42) and 45 ($\approx 26 \%$ from 42). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{CNMR}$ spectra of 9 are virtually identical to those of the pentacyclic nucleus of ptilomycalin A. ${ }^{1}$ The 2D-NMR ROESY spectra ${ }^{14 \mathrm{a}}$ of 9 show intense cross peaks between H_{1} and $\mathrm{H}_{19}, \mathrm{H}_{3}$ and $\mathrm{H}_{7}-\alpha$ ($\delta 2.52$), H_{1} and H_{13}, and H_{10} and H_{13}, as observed in the ROESY spectra of ptilomycalin A. ${ }^{1}$ Pentacyclic methyl esters 9 and 45 are cytotoxic to L 1210 murine leukemia cells with IC_{90} values of 2.5 and $1.25 \mu \mathrm{~g} / \mathrm{mL}$ and IC_{50} values of 1.25 and $0.5 \mu \mathrm{~g} / \mathrm{mL}$. 22 The comparable values for crambescidin $816,{ }^{2 a}$ which has an additional hydroxy group on the ring and a hydroxyspermidine side chain, are 0.18 and $0.09 \mu \mathrm{~g} / \mathrm{mL}$.

In MeOH containing $\mathrm{Et}_{3} \mathrm{~N}, 44$ was converted toa 1.3:1 mixture of 9 and 45, along with a little 44, which appears to be an equilibrium mixture. Treatment of 45 with $\mathrm{Et}_{3} \mathrm{~N}$ in MeOH for 1 d afforded a $7: 5: 8$ mixture of 44,9 , and 45 , respectively. In 50% aqueous MeOH , the open tautomer 44 was more stable, as we have noted in the crambine series. ${ }^{6}$ Heating a mixture of 9
and 45 with $\mathrm{Et}_{3} \mathrm{~N}$ in $1: 1 \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ at $60^{\circ} \mathrm{C}$ for 16 h afforded 50% of 44 and 25% of recovered 9 and 45.

Conclusion. The methyl ester of the pentacyclic nucleus of ptilomycalin A (9) has been prepared by an efficient, convergent, biogenetic, 14 -step route. The key steps involve the conversion of acyclic bis enone 39 to 9 in four steps. Michael addition of O-methylisourea to 39 afforded 52% of a mixture of isoureas $\mathbf{4 0}$ and 41, which were both converted to 72% of tricyclic aminals 42 and 43 by ammonolysis. Deprotection of the silyl ethers with HF and cyclization with $\mathrm{Et}_{3} \mathrm{~N}$ in MeOH afforded $9(\approx 34 \%$ from 42) and the diastereomer 45 with an equatorial methyl ester group ($\approx 26 \%$ from 42). We are now extending this strategy to the synthesis of ptilomycalin A (1) with a complete functionalized ester side chain using procedures developed in our crambine B synthesis. ${ }^{6 b}$

Experimental Section

General Procedures. NMR spectra were recorded at 300 MHz in CDCl_{3} except where otherwise indicated. Chemical shifts are reported in δ and coupling constants in Hertz. IR spectra are recorded in cm^{-1}. Combustion analyses were performed by Ba ron Consulting Co . and Spang Microanalytical Laboratory. Reactions were run under nitrogen.

5-((tert-Butyldimethylsilyl)oxy)-1-pentyne (15). A solution of tertbutyldimethylsilyl chloride ($3.7 \mathrm{~g}, 23.5 \mathrm{mmol}$) in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added slowly to a solution of 4 -pentyn- $1-\mathrm{ol}(1.68 \mathrm{~g}, 20 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}$ ($3.78 \mathrm{~mL}, 2.75 \mathrm{~g}, 27.2 \mathrm{mmol}$) in 25 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$. The mixture was warmed to room temperature, stirred for 4 h , and treated with 30 mL of water. After the organic layer was separated, the aqueous layer was extracted with $1: 1$ hexane-EtOAc $(2 \times 30 \mathrm{~mL})$. The combined organic layers were washed with brine (25 mL) and dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$). Removal of the solvent under reduced pressure followed by flash chromatography of the residue on silica gel (hexane) gave 3.73 g (94\%) of 15 as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $3.70(\mathrm{t}, 2, J=6.0), 2.27(\mathrm{dt}, 2, J=$ 2.6, 7.0), $1.93(\mathrm{t}, 1, J=2.6), 1.73(\mathrm{tt}, 2, J=6.0,7.0), 0.90(\mathrm{~s}, 9), 0.06$ (s, 6); ${ }^{13} \mathrm{C}$ NMR 84.2, 68.2, 61.4, 31.5, 25.8 (3 C), 18.3, 14.8, -5.4 (2 C); IR (neat) 3320, 2960, 2930, 2860, 1470, 1460, 1390, 1255, 1105 , 980, 830, 770. The data are identical to those previously reported. ${ }^{9}$

1-((tert-Butyldimethylisily)oxy)-4-tridecyn-6-ol (16). n-Butyllithium $(2.5 \mathrm{M}, 5.2 \mathrm{~mL}, 13 \mathrm{mmol})$ was added slowly to a solution of $15(2.44 \mathrm{~g}$, 12.3 mmol) in 35 mL of THF at $-78^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 10 min , and DMPU (2.11 mL) was added to the mixture, which was then cooled to $-78^{\circ} \mathrm{C}$. A solution of octanal $(1.73$ $\mathrm{g}, 13.5 \mathrm{mmol}$) in 5 mL of THF was added slowly to the mixture, which was then stirred at room temperature for 12 h . The mixture was treated with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(40 \mathrm{~mL})$. The organic layer was separated, and the aqueous layer was extracted with $1: 1$ hexane-EtOAc (2×30 mL). The combined organic layers were washed with brine (25 mL) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Removal of the solvent under reduced pressure followed by flash chromatography of the residue on silica gel ($9: 1$ hexane-EtOAc) gave $3.70 \mathrm{~g}(92 \%)$ of 16 as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $4.34(\mathrm{tt}, 1, J=2.0$, 6.2), $3.69(\mathrm{t}, 2, J=6.1), 2.29(\mathrm{dt}, 2, J=2.0,7.1), 1.80(\mathrm{br} \mathrm{s}, 1, \mathrm{OH})$, $1.67-1.75(\mathrm{~m}, 4), 1.43(\mathrm{~m}, 2), 1.20-1.37(\mathrm{~m}, 8), 0.90(\mathrm{~s}, 9), 0.88(\mathrm{t}, 3$, $J=6.8$), 0.06 (s, 6); ${ }^{13} \mathrm{C}$ NMR 84.9, 81.5, 62.7, 61.6, 38.2, 31.8, 31.7, $29.25,29.21,25.9$ (3C), 25.2, 22.6, 18.3, 15.1, 14.1,-5.3 (2 C); IR (neat) 3600-3150, 2960, 2940, 2865, 1475, 1470, 1390, 1260, 1110, 1070, 980 , $960,835,775$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 69.87 ; \mathrm{H}, 11.73$. Found: C, 69.49; H, 12.10.
(4E)-Tridecene-1,6-diol (17). A solution of $16(1.9 \mathrm{~g}, 5.82 \mathrm{mmol})$ in 6 mL of THF was added slowly into a solution of lithium aluminum hydride ($1 \mathrm{M}, 6.5 \mathrm{~mL}, 6.5 \mathrm{mmol}$) in 30 mL of THF. The mixture was heated at reflux for 5 h , cooled to room temperature, and treated with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (50 mL). After the organic layer was separated, the aqueous layer was extracted with $1: 1$ hexane-EtOAc $(2 \times 40 \mathrm{~mL})$. The combined organic layers were washed with brine (30 mL) and dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$). Removal of the solvent under reduced pressure followed by flash chromatography of the residue on silica gel ($6: 4$ hexane-EtOAc) gave 1.25 g (95%) of 17 as a colorless oil: ${ }^{1} \mathrm{H}$ NMR 5.66 (dt, $1, J=15.3$, 6.7), 5.50 (ddt, $1, J=15.3,6.9,1.2$), 4.04 (m, 1), 3.66 (t, 2, $J=6.5$), $2.13(\mathrm{dt}, 2, J=6.7,7.7), 1.66(\mathrm{tt}, 2, J=6.5,7.7), 1.50(\mathrm{~m}, 2), 1.20-1.40$ ($\mathrm{m}, 10$), $0.88\left(\mathrm{t}, 3, J=6.7\right.$); ${ }^{13} \mathrm{C}$ NMR 133.6, 130.8, 72.8, 61.8, 37.2, 31.8,31.7, 29.4, 29.2, 28.4, 25.4, 22.5, 14.0; IR (neat) 3650-3050, 2924, $2855,1670,1466,1378,1345,1317,1134,1060,1020,968,723$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{O}_{2}$: C, 72.84; $\mathrm{H}, 12.23$. Found: $\mathrm{C}, 72.49 ; \mathrm{H}, 12.52$.

6-0xo-(4E)-tridecenal (18). Dimethyl sulfoxide ($764 \mathrm{mg}, 9.8 \mathrm{mmol}$) was added slowly to a solution of oxalyl chloride ($583 \mathrm{mg}, 4.6 \mathrm{mmol}$) in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$. After 15 min , a solution of alcohol 17 (380 $\mathrm{mg}, 1.8 \mathrm{mmol}$) in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added slowly to the mixture, which was then stirred at $-78^{\circ} \mathrm{C}$ for $15 \mathrm{~min} . \mathrm{Et}_{3} \mathrm{~N}(2.5 \mathrm{~mL}, 2.0 \mathrm{~g}, 20 \mathrm{mmol})$ was added to the mixture slowly. The mixture was warmed to room temperature, treated with hexane (40 mL), washed with $1 \mathrm{~N} \mathrm{HCl}(15$ mL), saturated NaHCO_{3} solution (15 mL), and water ($2 \times 15 \mathrm{~mL}$), and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Removal of the solvent under reduced pressure followed by flash chromatography of the residue on silica gel (17:3 hexane-EtOAc) gave $354 \mathrm{mg}(94 \%)$ of 18 as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $9.81(\mathrm{t}, 1, J=1.0)$, $6.81(\mathrm{dt}, 1, J=16.0,6.5), 6.12(\mathrm{dt}, 1, J=16.0,1.6), 2.67(\mathrm{~m}, 2), 2.54$ (m, 2), $2.52(\mathrm{t}, 2, J=7.4), 1.59(\mathrm{~m}, 2), 1.20-1.40(\mathrm{~m}, 8), 0.88(\mathrm{t}, 3, J$ $=6.7$); ${ }^{13} \mathrm{C}$ NMR 200.29, 200.25, 143.9, 130.9, 41.8, 40.2, 31.5, 29.1, 28.9, 24.5, 24.0, 22.5, 13.9; IR (neat) 2927, 2856, 1726, 1697, 1672, 1631, 1466, 1410, 1376, 1270, 1209, 1190, 1167, 1132, 1072, 979, 916 , 724.

Methyl (2E,6E)- and (2Z,6E)-2-Hexanoyl-8-oxopentadecadienoate (20a,b). A solution of $18(186 \mathrm{mg}, 0.89 \mathrm{mmol}), 1911(200 \mathrm{mg}, 1.16$ mmol), and piperidine (20 mg) in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was kept at $-20^{\circ} \mathrm{C}$ for 2 d . The mixture was treated with hexane (25 mL), washed with water (10 mL , containing 2 drops of AcOH) and brine (10 mL), and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Removal of the solvent under reduced pressure followed by flash chromatography of the residue on silica gel ($9: 1$ hexane-EtOAc) gave $196 \mathrm{mg}(61 \%, 89 \%$ based on recovered $\mathbf{1 8}$) of 20a, b as a $1: 1$ mixture followed by 60 mg of 18 (17:3 hexane-EtOAc). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{O}_{4}: \mathrm{C}, 72.49 ; \mathrm{H}, 9.95$. Found: C, 72.14; H, 10.24 .

Flash chromatography of 50 mg of the mixture of $20 \mathrm{a}, \mathrm{b}$ on silica gel (23:2 hexane-EtOAc) gave 16.0 mg of pure 20a, followed by 23.0 mg of a mixture rich in 20 b , and 10.0 mg of pure 20 b .
Data for the $2 E, 6 E$-isomer (20a): ${ }^{1} \mathrm{H}$ NMR 6.87 (m, 1), 6.77 (m, 1), $6.12(\mathrm{br} \mathrm{d}, 1, J=15.9), 3.79(\mathrm{~s}, 3), 2.63(\mathrm{t}, 2, J=7.4), 2.53(\mathrm{t}, 2, J=$ 7.4), 2.30-2.42 (m, 4), 1.55-1.70 (m, 4), 1.15-1.40 (m, 12), $0.90(\mathrm{t}, 3$, $J=6.8$), $0.88(\mathrm{t}, 3, J=6.8) ;{ }^{13} \mathrm{C}$ NMR 203.3, 200.4, 164.7, 146.2, 144.0, 136.3, 131.0, 52.1, 43.3, 40.3, 31.6, 31.2, 31.1, 29.2, 29.0, 27.8, 24.1, 23.2, 22.5, 22.3, 14.0, 13.8; IR (neat) 2965, 2940, 2860, 1720, 1680 , 1640, 1470, 1440, 1380, 1250, 1050, 975.
Data for the $2 Z, 6 E$-isomer (20b): ${ }^{1} \mathrm{H}$ NMR $6.78(\mathrm{t}, 1, J=7.8), 6.77$ (dt, $1, J=15.9,6.6), 6.13(\mathrm{dt}, 1, J=15.9,1.4), 3.84(\mathrm{~s}, 3), 2.61(\mathrm{t}, 2$, $J=7.4), 2.53(\mathrm{t}, 2, J=7.5), 2.30-2.55(\mathrm{~m}, 4), 1.50-1.67(\mathrm{~m}, 4), 1.15-$ $1.40(\mathrm{~m}, 12), 0.89(\mathrm{t}, 3, J=6.9), 0.88(\mathrm{t}, 3, J=6.8) ;{ }^{13} \mathrm{C}$ NMR 200.3, 197.5, 166.6, 145.5, 144.0, 137.2, 131.0, 52.1, 40.3.39.3, 31.6.31.2, 30.9, 29.2, 29.0, 28.2, 24.1, 23.6, 22.5, 22.3, 14.0, 13.8; IR (neat) 3040, 2970, $2940,2870,1740,1705,1680,1640,1460,1440,1380,1220,980$. The stereochemical assignment was based on the ${ }^{13} \mathrm{C}$ NMR absorptions of the carbonyl carbons. ${ }^{12}$
(4a $\alpha, 7 \beta$)- and ($4 \mathrm{a} \alpha, 7 \alpha$)-1-Methoxy-4a,5,6,7-tetrahydro-3-penty1-7-(2-oxononyl)pyrrolo 1,2 -c]pyrimidine-4-carboxylate (21 and 22). A suspension of 20 ($200 \mathrm{mg}, 0.55 \mathrm{mmol}$), O-methylisoureido sulfate (280 $\mathrm{mg}, 1.14 \mathrm{mmol}$), and sodium bicarbonate ($180 \mathrm{mg}, 2.14 \mathrm{mmol}$) in 3 mL of DMF was stirred at $50^{\circ} \mathrm{C}$ for 2 h . The mixture was treated with water $(10 \mathrm{~mL})$ and extracted with $1: 1$ hexane-EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine (10 mL) and dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$). Removal of the solvent under reduced pressure followed by flash chromatography of the residue on silica gel (17:3 hexane-EtOAc) gave 129.6 mg (56%) of 21 and 22 as a $3: 1$ mixture of anti- and synisomers. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{4}: \mathrm{C}, 68.54 ; \mathrm{H}, 9.59$. Found: C, 67.62; H, 9.33.

Flash chromatography of 40 mg of the $\mathbf{2 1}$ and $\mathbf{2 2}$ mixture on silica gel ($9: 1$ hexane-EtOAc) gave 24.0 mg of pure 21, followed by 8.6 mg of a mixture rich in 21, and 6.0 mg of pure 22.
Data for 21: ${ }^{1} \mathrm{H}$ NMR 4.52 (dd, $1, J=10.5,4.4, \mathrm{H}_{13}$), 4.39 (ddt, 1 , $\left.J=4.5,8.8,7.8, \mathrm{H}_{10}\right), 3.80(\mathrm{~s}, 3), 3.68(\mathrm{~s}, 3), 2.86$ (dd, $1, J=16.6,4.5$, H_{9}), $2.69\left(\mathrm{dt}, 1, J=12.2,8.0, \mathrm{H}_{16}\right), 2.52\left(\mathrm{dd}, 1, J=16.6,8.8, \mathrm{H}_{9}\right), 2.40$ $\left(\mathrm{t}, 2, J=7.3, \mathrm{H}_{7}\right), 2.30-2.52\left(\mathrm{~m}, 2, \mathrm{H}_{12}\right.$ and $\left.\mathrm{H}_{16}\right), 2.12$ (dddd, $1, J=$ $\left.1.4,8.2,9.7,12.6, \mathrm{H}_{11}\right), 1.45-1.65(\mathrm{~m}, 6), 1.20-1.40(\mathrm{~m}, 12), 0.89(\mathrm{t}, 3$, $J=7.0$), 0.88 ($\mathrm{t}, 3, J=6.8$); ${ }^{13} \mathrm{C}$ NMR 209.2, 167.3, 162.1, 157.0, 101.2, 58.7, 54.7, 54.1, 50.5, 48.0, 43.5, 35.6, 35.5, 31.9, 31.6, 29.1, 29.0, 28.7, 28.1, 23.6, 22.60, 22.56, 14.04, 14.01; IR (neat) 2960, 2940, 2865, 1715, $1685,1620,1535,1485,1405,1260,1240,1185,1120,1070,1000$. The stereochemistry was established by a strong ROESY cross peak between H_{13} and $\mathrm{H}_{9}\left(\delta 2.54\right.$) and a weak cross peak between H_{13} and $\mathrm{H}_{9}(\delta 2.86)$. There was no ROESY cross peak between H_{10} and H_{13}.
Data for 22: ${ }^{1} \mathrm{H}$ NMR 4.39 (dd, $1, J=10.3,4.6, \mathrm{H}_{13}$), 4.19 (ddd, $1, J=3.0,8.0,9.5, \mathrm{H}_{10}$), $3.83(\mathrm{~s}, 3), 3.68(\mathrm{~s}, 3), 2.82(\mathrm{dd}, 1, J=3.0$, $\left.16.8, \mathrm{H}_{9}\right), 2.68\left(\mathrm{~m}, 1, \mathrm{H}_{16}\right), 2.45\left(\mathrm{dd}, 1, J=9.5,16.8, \mathrm{H}_{9}\right), 2.36(\mathrm{dt}, 2$,
$\left.J=1.6,7.8, \mathrm{H}_{7}\right), 2.30-2.55\left(\mathrm{~m}, 2, \mathrm{H}_{12}\right.$ and $\left.\mathrm{H}_{16}\right), 2.07\left(\mathrm{~m}, 1, \mathrm{H}_{11}\right)$, $1.45-1.80(\mathrm{~m}, 6), 1.20-1.45(\mathrm{~m}, 12), 0.90(\mathrm{t}, 3, J=6.9), 0.88(\mathrm{t}, 3, J$ $=6.8) ;{ }^{13} \mathrm{C}$ NMR 209.1, 167.1, 163.7, 157.1, 103.2, 59.5, 54.1, 52.5, 50.5, 47.7, 43.5, 35.0, 31.9, 31.6, 30.7, 30.2, 29.1, 29.0, 28.3, 23.7, 22.61, 22.58, 14.1, 14.0; IR (neat) 2970, 2950, 2870, 1720, 1610, 1530, 1490, $1410,1250,1125,1060$. There was a weak ROESY cross peak between H_{10} and H_{13}. There was no ROESY cross peak between H_{13} and either Hg.

Methyl 7-Methoxy- and 7-Hydroxy-(2a $\alpha, 7 \alpha, 8 a \alpha$)-7-heptyl-1,2,6,7,8, 8a-hexahydro-4-pentyl-2aH-5,6,8b-triazaacenaphthylene-3-carboxylate Hydrochloride (24a,b). A solution of the mixture of 21 and $22(110 \mathrm{mg})$ and ammonium acetate (80 mg) in 5 mL of methanol was saturated with NH_{3} at $10^{\circ} \mathrm{C}$ for 5 min , the tube sealed, and the solution warmed to 60 ${ }^{\circ} \mathrm{C}$ for 4 d . After removal of the solvent under reduced pressure, the mixture was treated with brine (10 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 $\times 10 \mathrm{~mL}$). The combined organic layers were washed with brine (10 $\mathrm{mL})$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Removal of the solvent under reduced pressure gave a crude product (125 mg) containing 65% of $24 a$ (by ${ }^{1} \mathrm{H}$ NMR analysis). Compound 24a cannot be purified by flash chromatography on silica gel because it decomposes. Flash chromatography of the crude product on silica gel ($7: 3$ to $1: 9 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOAc}$) gave $70 \mathrm{mg}(60 \%)$ of a $1: 1$ mixture of $24 \mathrm{a}, \mathrm{b}$. Recrystallization ($4: 1$ hexane-EtOAc) of the mixture gave 20 mg of pure $\mathbf{2 4 b}$. Compound $\mathbf{2 4 b}$ in methanol was converted to a $19: 1$ mixture of $24 \mathrm{a}, \mathrm{b}$.

A solution of pure 21 (20 mg) and ammonium acetate (15 mg) in 8 mL of methanol was saturated with NH_{3} at $10^{\circ} \mathrm{C}$ for 5 min and heated for 20 h in a sealed tube at $60^{\circ} \mathrm{C}$. Workup as above gave 55% of $24 a$ (by ${ }^{1} \mathrm{H}$ NMR analysis).

A solution of pure 22 (16 mg) and ammonium acetate (10 mg) in 8 mL of methanol was saturated with NH_{3} at $10^{\circ} \mathrm{C}$ for 5 min and heated for 20 h in a sealed tube at $60^{\circ} \mathrm{C}$. Workup as above gave 75% of 24 a (by ${ }^{1} \mathrm{H}$ NMR analysis).

Data for 24a: ${ }^{1} \mathrm{H}$ NMR 10.97 ($\mathrm{br} \mathrm{s}, 1$), 10.14 ($\mathrm{br} \mathrm{s}, 1$), 4.51 (dd, 1, $J=9.9,5.8, \mathrm{H}_{13}$), 3.86 (dddd, $\left.1, J=12.8,8.4,6.5,5.4, \mathrm{H}_{10}\right), 3.75(\mathrm{~s}$, 3), 3.26 (s, 3), 2.74 (dd, $2, J=9.0,6.9, \mathrm{H}_{16}$), 2.59 (dddd, $1, J=12.5$, $9.1,5.8,3.0, \mathrm{H}_{12}$), 2.43 (dd, $1, J=13.4,5.4, \mathrm{H}_{9}$), 2.17 (dddd, $1, J=12.8$, 8.4, 8.4, 8.4, H_{11}), $2.10\left(\mathrm{~m}, 1, \mathrm{H}_{7}\right), 1.92\left(\mathrm{~m}, 1, \mathrm{H}_{7}\right), 1.45-1.78(\mathrm{~m}, 6)$, $1.40\left(\mathrm{dd}, 1, J=13.4,12.8, \mathrm{H}_{9}\right), 1.20-1.45(\mathrm{~m}, 12), 0.90(\mathrm{t}, 3, J=6.8)$, 0.88 (3, t, $J=6.9$); ${ }^{13} \mathrm{C}$ NMR 165.2, 147.8, 145.8, 100.5, 83.4, 57.1, 51.6, $51.4,49.2,36.3,34.5,33.1,31.6,31.5,31.1,29.2,29.0,27.7,26.0,22.9$, 22.5, 22.2, 14.0, 13.9; IR (neat) 3220, 3080, 2940, 2865, 1720, 1695, $1590,1520,1465,1440,1320,1275,1190,1095,1060$. There was a strong ROESY cross peak between H_{10} and H_{13}.

Data for 24b: mp $120.0-121.0^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR 10.66 (br s, 1), 9.26 (br $\mathrm{s}, 1), 4.53$ (dd, $1, J=9.9,6.0, \mathrm{H}_{13}$), 4.05 (m, 1, H_{10}), 3.73 (s, 3), 2.78 (ddd, $1, J=13.0,9.1,6.6, \mathrm{H}_{16}$), 2.52-2.65 (m, 2, H_{12} and H_{16}), 2.38 (dd, $1, J=13.1,5.1, \mathrm{H} 9$), 2.18 (ddt, $1, J=12.6,7.8,8.8, \mathrm{H}_{11}$), 1.98 (dt, 1 , $\left.J=4.4,12.0, \mathrm{H}_{7}\right), 1.85\left(\mathrm{dt}, 1, J=4.5,12.0, \mathrm{H}_{7}\right), 1.45-1.80(\mathrm{~m}, 6), 1.44$ (dd, $\left.1, J=13.1,12.7, \mathrm{H}_{9}\right), 1.20-1.40(\mathrm{~m}, 12), 0.89(\mathrm{t}, 3, J=6.8), 0.87$ $(\mathrm{t}, 3, J=6.6) ;{ }^{13} \mathrm{C}$ NMR 165.2, 148.0, 145.5, 100.7, 80.1, 56.6, 51.6, $51.3,40.6,37.2,32.9,31.8,31.5,31.0,29.6,29.1,27.9,26.2,23.2,22.6$, 22.2, 14.1, 14.0; IR (KBr) 3300, 2965, 2940, 2860, 1720, 1695, 1585 , 1515, 1470, 1440, 1265, 1190, 1110, 1090. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{~N}_{3} \mathrm{O}_{3^{-}}$ Cl: C, 62.49; H, 9.12; N, 9.51. Found: C, 62.21; H, 9.06; N, 9.41 .
(土)-8-((tert-Butyldimethylsllyl)oxy)-4-octyn-3-ol (25). n-Butyllithium ($2.5 \mathrm{M}, 7.0 \mathrm{~mL}, 17.5 \mathrm{mmol}$) was added slowly to a solution of $\mathbf{1 5}$ $(3.0 \mathrm{~g}, 15.2 \mathrm{mmol})$ in 35 mL of THF at $-78^{\circ} \mathrm{C}$. The mixture was warmed to room temperature for 5 min , and DMPU (3.0 mL) was added to the mixture, which was then cooled to $-78^{\circ} \mathrm{C}$. A solution of propionaldehyde ($0.96 \mathrm{~g}, 16.5 \mathrm{mmol}$) in 8 mL of THF was added slowly to the mixture. After 1 h , the mixture was warmed to room temperature for 2 h and treated with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (30 mL) and brine (10 mL). The organic layer was separated, and the aqueous layer was extracted with $1: 1$ hexane-EtOAc $(2 \times 30 \mathrm{~mL})$. The combined organic layers were washed with brine (30 mL) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Removal of the solvent under reduced pressure followed by flash chromatography of the residue on silica gel ($9: 1$ hexane-EtOAc) gave 3.64 g (94%) of $\mathbf{2 5}$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $4.30(\mathrm{tt}, 1, J=2.0,6.4), 3.69(\mathrm{t}, 2, J=6.1), 2.30(\mathrm{dt}, 2$, $J=2.0,7.1), 1.81(\mathrm{br} \mathrm{s}, 1, \mathrm{OH}), 1.71(\mathrm{tt}, 2, J=6.1,7.1), 1.69(\mathrm{~m}, 2)$, $1.00(\mathrm{t}, 3, J=7.4), 0.89(\mathrm{~s}, 9), 0.06(\mathrm{~s}, 6) ;{ }^{13} \mathrm{C}$ NMR 84.9, 81.2, 63.8, 61.5, 31.6, 31.1, 25.9 (3 C), 18.3, 15.0, 9.4, -5.4 (2 C); IR (neat) 3362, 2955, 2930, 2858, 1475, 1464, 1388, 1255, 1106, 1071, 1006, 962, 836, 776. Anal. Caled for $\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Si}$: $\mathrm{C}, 65.57 ; \mathrm{H}, 11.00$. Found: C , 65.57; H, 11.00.

8-((tert-Butyldimethylsilyl)oxy)-4-octyn-3-one (26). Dimethyl sulfoxide ($3.20 \mathrm{~g}, 40 \mathrm{mmol}$) was added slowly to a solution of oxalyl chloride
($2.47 \mathrm{~g}, 19 \mathrm{mmol}$) in 60 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$. After 15 min , a solution of alcohol $25(4.4 \mathrm{~g}, 17.2 \mathrm{mmol})$ in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added slowly to the mixture, which was then stirred at $-78^{\circ} \mathrm{C}$ for $15 \mathrm{~min} . \mathrm{Et}_{3} \mathrm{~N}$ ($12.0 \mathrm{~mL}, 9.6 \mathrm{~g}, 86 \mathrm{mmol}$) was added to the mixture slowly. The mixture was warmed to room temperature, treated with hexane $(120 \mathrm{~mL})$, washed with $1 \mathrm{~N} \mathrm{HCl}(40 \mathrm{~mL})$, saturated NaHCO_{3} solution (30 mL), and water ($2 \times 40 \mathrm{~mL}$), and dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$). Removal of the solvent under reduced pressure followed by flash chromatography of the residue on silica gel ($19: 1$ hexane-EtOAc) gave $3.96 \mathrm{~g}\left(91 \%\right.$) of 26 as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $3.67(\mathrm{t}, 2, J=5.9), 2.53(\mathrm{q}, 2, J=7.4), 2.45(\mathrm{t}, 2, J=7.1), 1.75$ ($\mathrm{tt}, 2, J=5.9,7.1$), $1.11(\mathrm{t}, 3, J=7.4), 0.87(\mathrm{~s}, 9), 0.04(\mathrm{~s}, 6) ;{ }^{13} \mathrm{C}$ NMR 188.6, 93.7, 80.6, 61.1, 38.7, 30.7, 25.8 (3 C), 18.2, 15.3, 8.0, -5.5 (2 C); IR (neat) $2955,2930,2857,2212,1680,1472,1462,1411,1388,1360$, $1349,1256,1175,1107,961,836,777$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Si}$: C, 66.09; H, 10.30. Found: C, 65.70; H, 10.47.
(S)-8-((tert-Butyldimethylsilyl)oxy)-4-octyn-3-ol (27). A mixture of $9-\mathrm{BBN}(2.50 \mathrm{~g}, 20 \mathrm{mmol})$ and $(S)-(-)-\alpha$-pinene ($3.0 \mathrm{~g}, 22 \mathrm{mmol}$) was warmed to $65^{\circ} \mathrm{C}$ for 6 h and then cooled to $0^{\circ} \mathrm{C} .{ }^{15}$ Ketone $26(3.3 \mathrm{~g}$, 13 mmol) was added to the mixture, which was then stirred at room temperature for 30 h . The mixture was treated with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ and ethanolamine ($1.5 \mathrm{~mL}, 24 \mathrm{mmol}$) and then cooled to $0^{\circ} \mathrm{C}$. The deposit formed was removed by filtration, and the residue was washed with cold ether (10 mL). The organic layer was washed with brine $(2 \times 20 \mathrm{~mL})$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Removal of the solvent under reduced pressure followed by flash chromatography of the residue on silica gel ($9: 1$ hexaneEtOAc) gave $3.15 \mathrm{~g}(95 \%)$ of 27 as a colorless oil: $[\alpha]_{D}=-6.0^{\circ}\left(\mathrm{CHCl}_{3}\right.$, 0.45); the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and IR data are identical to those of the racemic compound described above. The major enantiomer was assigned to be the (S)-propargylic alcohol on the basis of literature precedent. ${ }^{15}$

The optical purity of 27 was determined by analysis of the ${ }^{1} \mathrm{H}$ NMR spectra of the Mosher's esters of 27 and the racemate 25, which were prepared in pyridine from the acid chloride formed from $(R)-(+)$-Mosher's acid and oxalyl chloride in ether catalyzed by DMF. ${ }^{16}$ The Mosher's ester from 27 contains two diastereomers in a $28: 1$ ratio, as determined by the integration of the methoxy peaks ($\delta 3.56$, major; $\delta 3.59$, minor).

Data for the major diastereomer of the Mosher's ester from 27: 7.507.57 (m, 2), 7.35-7.42 (m, 3), 5.47 (tt, $1, J=6.4,2.0$), $3.65(\mathrm{t}, 2, J=$ $6.1), 3.56$ (br s, 3), $2.28(\mathrm{dt}, 2, J=2.0,7.1), 1.84(\mathrm{dq}, 2, J=6.4,7.4)$, 1.68 (tt, 2, $J=6.1,7.1$), 1.02 (t, 3, $J=7.4$), 0.89 (s, 9), 0.041 (s, 6).

Data for the minor diastereomer of the Mosher's ester from 27: 7.507.60 (m, 2), 7.36-7.43 (m, 3), $5.50(\mathrm{tt}, 1, J=6.4,2.0), 3.67(\mathrm{t}, 2, J=$ 6.1), 3.59 (br s, 3), 2.31 (dt, $2, J=2.0,7.1$), 1.79 (dq, $2, J=6.4,7.4$), $1.70(\mathrm{tt}, 2, J=6.1,7.1), 0.93(\mathrm{t}, 3, J=7.4), 0.89(\mathrm{~s}, 9), 0.038(\mathrm{~s}, 6)$.
(Z)-(S)-8-((tert-Butyldimethylsilyl)oxy)-4-octen-3-ol (28). A suspension of alcohol $27(4.10 \mathrm{~g}, 16.0 \mathrm{mmol})$, quinoline $(0.17 \mathrm{~mL})$, and 5% palladium on calcium carbonate, poisoned with lead (Aldrich 20,573-7, Lindlar catalyst) (340 mg), in 30 mL of hexane was stirred under H_{2} (1 atm) at room temperature for 1 h . The solid was removed by filtration, and the residue was washed with hexane (30 mL). Concentration of the filtrate under reduced pressure followed by flash chromatography of the residue on silica gel ($9: 1$ hexane-EtOAc) gave 4.00 g (98%) of 28 as a colorless oil which contained about 1% of the trans-isomer: $[\alpha]_{D}=+12.9^{\circ}$ $\left(\mathrm{CHCl}_{3}, 1.5\right) ;{ }^{1} \mathrm{H}$ NMR $5.37-5.53(\mathrm{~m}, 2), 4.35(\mathrm{dt}, 1, J=7.9,6.8), 3.63$ $(\mathrm{t}, 2, J=6.2), 2.28(\mathrm{~m}, 1), 2.11(\mathrm{~m}, 1), 1.38-1.69(\mathrm{~m}, 4), 0.90(\mathrm{~s}, 9)$, $0.89(\mathrm{t}, 3, J=7.6), 0.06$ (s, 6); ${ }^{13} \mathrm{C}$ NMR 133.3, 131.4, 68.6, 62.0, 32.3, $30.1,25.9$ (3 C), 23.8, 18.3, 9.7, -5.3 (2 C); IR (neat) 3350, 3007, 2957, 2930, 2856, 1658, 1471, 1463, 1386, 1255, 1102, 1006, 962, 836, 775. Anal. Caled for $\mathrm{C}_{14} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 65.06 ; \mathrm{H}, 11.70$. Found: $\mathrm{C}, 64.67 ; \mathrm{H}$, 12.09.
(Z)-(S)-1-((tert-Butyldimethylsilyl)oxy)-6-((tert-butyldiphenylsilyl)-oxy)-4-octene (29). tert-Butyldiphenylsilyl chloride ($6.3 \mathrm{~g}, 23.0 \mathrm{mmol}$) was slowly added to a solution of alcohol $28(3.8 \mathrm{~g}, 14.7 \mathrm{mmol})$, DMAP ($180 \mathrm{mg}, 1.5 \mathrm{mmol}$), and triethylamine ($3.03 \mathrm{~g}, 30 \mathrm{mmol}$) in 50 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature. After 20 h , the solvent was removed under reduced pressure. The mixture was treated with hexane (60 mL). The solid salt was removed by filtration, and the residue was washed with hexane (30 mL). The organic layer was washed with water $(20 \mathrm{~mL})$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Removal of the solvent under reduced pressure followed by flash chromatography of the residue on silica gel (hexane) gave 6.8 $\mathrm{g}(93 \%)$ of 29 followed by $0.20 \mathrm{~g}(5 \%)$ of recovered alcohol 28: $[\alpha]_{\mathrm{D}}=$ $+18.3^{\circ}\left(\mathrm{CHCl}_{3}, 0.9\right) ;{ }^{1} \mathrm{H}$ NMR 7.63-7.76 (m, 4), 7.28-7.45 (m, 6), 5.42 (ddt, $1, J=11.0,8.8,1.5$), 5.24 (dtd, $1, J=11.0,7.2,0.9$), 4.38 (dtd, $1, J=8.8,7.2,0.9), 3.47(\mathrm{dt}, 1, J=10.0,6.6), 3.42(\mathrm{dt}, 1, J=10.0,6.6)$, 1.72 (ddtd, $1, J=14.0,7.2,8.0,1.5$), 1.59 (ddtd, $1, J=14.0,7.2,7.5$, $1.5), 1.58(\mathrm{~m}, 1), 1.48(\mathrm{~m}, 1), 1.35(\mathrm{tt}, 2, J=7.2,6.6), 1.06(\mathrm{~s}, 9), 0.88$ (s, 9), $0.80\left(\mathrm{t}, 3, J=7.5\right.$), 0.02 (s, 6); ${ }^{13} \mathrm{C}$ NMR 135.94 (2 C), 135.85
(2 C), 134.6, 134.5, 133.0, 129.4, 129.3, 129.2, 127.4 (2 C), 127.3 (2 C), $70.7,62.7,32.7,31.2,27.0$ (3 C), 25.9 (3 C), 24.0, 19.3, 18.3, 9.3, -5.3 (2 C); IR (neat) 3071, 3049, 3012, 2957, 2930, 2857, 1472, 1463, 1428, $1389,1361,1255,1106,836,701$. Anal. Calce for $\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O}_{2} \mathrm{Si}_{2}: \mathrm{C}$, 72.52; H, 9.74. Found: C, 72.50; H, 9.60.
(Z)-(S)-6-((tert-Butyldiphenylsilyl)oxy)-4-octen-1-ol (30). A solution of $29(6.2 \mathrm{~g}, 12.5 \mathrm{mmol})$ and PPTS $(1.0 \mathrm{~g}, 4.0 \mathrm{mmol})$ in 65 mL of EtOH was stirred at room temperature for 40 h . Removal of the solvent under reduced pressure followed by flash chromatography of the residue on silica gel gave 320 mg (5%) of recovered 29 (hexane), followed by 4.3 $\mathrm{g}(90 \%)$ of $30\left(19: 1\right.$ hexane-EtOAc) as a colorless oil: $[\alpha]_{\mathrm{D}}=+19.9^{\circ}$ $\left(\mathrm{CHCl}_{3}, 0.9\right) ;{ }^{1} \mathrm{H}$ NMR $7.60-7.75(\mathrm{~m}, 4), 7.26-7.44$ (m, 6), 5.44 (ddt, $1, J=11.0,9.0,1.6), 5.21(\mathrm{dtd}, 1, J=11.0,7.3,0.7), 4.36(\mathrm{dt}, 1, J=$ $9.0,6.0), 3.39(\mathrm{t}, 2, J=6.5), 1.65(\mathrm{~m}, 2), 1.58(\mathrm{~m}, 1), 1.48(\mathrm{~m}, 1)$, $1.20-1.42(\mathrm{~m}, 2), 1.04(\mathrm{~s}, 9), 0.79(\mathrm{t}, 3, J=7.4) ;{ }^{13} \mathrm{C}$ NMR $136.0(2 \mathrm{C})$, 135.9 (2 C), 134.50, 134.46, 133.4, 129.4, 129.3, 128.8, 127.4 (2 C), 127.2 (2 C), 70.6, 62.3, 32.3, 31.2, 26.9 (3 C), 23.8, 19.3, 9.2; IR (neat) 3330, 3071, 3049, 3012, 2960, 2931, 2857, 1658, 1589, 1472, 1463, 1428, $1390,1361,1111,1080,1056,821,740,702$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{2^{-}}$ Si: C, 75.34; H, 8.96. Found: C, 75.26; H, 9.29.
(Z)-(11S)-1-((tert-Butyldimethylsilyl)oxy)-11-((tert-butyldiphenyl-silyl)oxy)-9-tridecen-4-yn-6-ol(31). Dimethyl sulfoxide ($2.34 \mathrm{~g}, 30 \mathrm{mmol}$) was added slowly to a solution of oxalyl chloride $(1.75 \mathrm{~g}, 13 \mathrm{mmol})$ in 50 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$. After 20 min , a solution of alcohol 30 (4.2 $\mathrm{g}, 11 \mathrm{mmol}$) in 6 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added slowly to the mixture, which was then stirred at $-78^{\circ} \mathrm{C}$ for 20 min . $\mathrm{Et}_{3} \mathrm{~N}(6.1 \mathrm{~g}, 60 \mathrm{mmol})$ was added to the mixture slowly. The mixture was warmed to room temperature, treated with hexane (200 mL), washed with $7 \% \mathrm{AcOH}(90 \mathrm{~mL})$ and brine ($2 \times 50 \mathrm{~mL}$), and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Removal of the solvent under reduced pressure gave a crude aldehyde (4.3 g) which was used directly for next step.

At $-78^{\circ} \mathrm{C}$, a solution of this crude aldehyde in 10 mL of THF was added slowly to a solution of the lithium reagent prepared from 15^{9} (12.5 mmol) in 35 mL of THF, which was prepared from n-butyllithium (2.5 $\mathrm{M}, 5.0 \mathrm{~mL}, 12.5 \mathrm{mmol})$ and $15(2.5 \mathrm{~g}, 12.5 \mathrm{mmol})$ as described above. After 1 h , the mixture was warmed to room temperature for 1 h , and treated with hexane (200 mL). The organic layer was washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (80 mL) and brine $(2 \times 50 \mathrm{~mL}$) and dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$). Removal of the solvent under reduced pressure followed by flash chromatography of the residue on silica gel (19:1 hexane-EtOAc) gave $5.9 \mathrm{~g}(92 \%)$ of 31 as a colorless oil: ${ }^{1} \mathrm{H}$ NMR 7.62-7.72 (m, 4), $7.29-7.45(\mathrm{~m}, 6), 5.38-5.49(\mathrm{~m}, 1), 5.20(\mathrm{dtd}, 1 \times 0.5, J=11.5,7.4,0.8)$, $5.19(\mathrm{dtd}, \mathrm{I} \times 0.5, J=11.4,7.6,0.8), 4.39(\mathrm{dt}, 1, J=8.6,6.2), 4.09(\mathrm{~m}$, 1), $3.65(\mathrm{t}, 2 \times 0.5, J=6.1), 3.64(\mathrm{t}, 2 \times 0.5, J=6.1), 2.24(\mathrm{br} \mathrm{t}, 2$, $J=7.1$), $1.74(\mathrm{~m}, 2), 1.65(\mathrm{~m}, 2), 1.36-1.60(\mathrm{~m}, 4), 1.04(\mathrm{~s}, 9), 0.892$ (s, 9×0.5) , $0.889(\mathrm{~s}, 9 \times 0.5), 0.80(\mathrm{t}, 3 \times 0.5, J=7.4), 0.79(\mathrm{t}, 3 \times$ $0.5, J=7.4), 0.048(\mathrm{~s}, 6 \times 0.5), 0.043(\mathrm{~s}, 6 \times 0.5) ;{ }^{13} \mathrm{C}$ NMR $136.0(2$ C), 135.9 (2 C), $134.51,134.48,133.8(0.5 \mathrm{C}), 133.6(0.5 \mathrm{C}), 129.43$ (0.5 C), 129.40 (0.5 C), $129.3,128.4$ (0.5 C), 128.3 (0.5 C), 127.4 (2 C), 127.3 (2 C), $85.0,81.0,70.7,62.1$ (0.5 C), 61.9 (0.5 C), $61.5,37.9$ (0.5 C), 37.7 (0.5 C), 31.71 (0.5 C), $31.69(0.5 \mathrm{C}), 31.22(0.5 \mathrm{C}), 31.18(0.5$ C), 27.0 (3 C), 25.9 (3 C), $23.5,19.3,18.3,15.1,9.2,-5.3$ (2 C); IR (neat) 3374, 3071, 3048, 3013, 2957, 2930, 2857, 1658, 1590, 1475, $1463,1428,1390,1361,1256,1109,1007,836,702$. Anal. Calcd for $\mathrm{C}_{35} \mathrm{H}_{54} \mathrm{O}_{3} \mathrm{Si}_{2}: \mathrm{C}, 72.61 ; \mathrm{H}, 9.40$. Found: C, $72.37 ; \mathrm{H}, 9.09$.
(4E,9Z)-(11S)-11-((tert-Butyldiphenylsilyl)oxy)-4,9-tridecadiene-1,6diol (32). A solution of $31(4.8 \mathrm{~g}, 8.3 \mathrm{mmol})$ in 5 mL of THF was added to a solution of lithium aluminum hydride ($1 \mathrm{M}, 8.3 \mathrm{~mL}, 8.3 \mathrm{mmol}$) in 50 mL of THF at room temperature. The solution was heated at reflux for 4 h , cooled to $0^{\circ} \mathrm{C}$, and treated with hexane (200 mL). The organic layer was washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(50 \mathrm{~mL})$ and brine (2 $\times 80 \mathrm{~mL}$) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Removal of the solvent under reduced pressure followed by flash chromatography of the residue on silica gel ($4: 6$ hexane-EtOAc) gave 3.3 g (85\%) of $\mathbf{3 2}$ as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $7.60-7.73(\mathrm{~m}, 4), 7.27-7.44(\mathrm{~m}, 6), 5.28-5.60(\mathrm{~m}, 3), 5.21(\mathrm{dtd}, 1, J=$ $11.0,7.4,1.0), 4.37(\mathrm{~m}, 1), 3.81(\mathrm{~m}, 1), 3.61(\mathrm{t}, 2 \times 0.5, J=6.5), 3.60$ $(\mathrm{t}, 2 \times 0.5, J=6.5), 2.07(\mathrm{dt}, 2, J=7.4,7.1), 1.51-1.70(\mathrm{~m}, 6), 1.47$ $(\mathrm{m}, 1), 1.26(\mathrm{~m}, 1), 1.04(\mathrm{~s}, 9), 0.78(\mathrm{t}, 3, J=7.4) ;{ }^{13} \mathrm{C}$ NMR $136.0(2$ C), 135.8 (2 C), $134.55(0.5 \mathrm{C}), 134.53(0.5 \mathrm{C}), 134.48$ (0.5 C), 134.46 (0.5 C), $133.35(0.5 \mathrm{C}), 133.28(0.5 \mathrm{C}), 133.22(0.5 \mathrm{C}), 133.19(0.5 \mathrm{C})$, 131.0 (0.5 C), 130.9 (0.5 C), 129.41 (0.5 C), 129.38 (0.5 C), 129.28, 128.8, 127.4 (2 C), 127.2 (2 C), 72.2 (0.5 C), 72.1 (0.5 C), $70.6,62.2$, 37.0 (0.5 C), 36.8 (0.5 C), 31.98 (0.5 C), 31.95 (0.5 C), 31.19 (0.5 C), 31.14 (0.5 C), 28.4, 26.9 (3 C), 23.7 (0.5 C), 23.6 (0.5 C), 19.2, 9.2; IR (neat) 3340, 3069, 3048, 2959, 2931, 2857, 1472, 1463, 1427, 1111,

1056, 701. Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{O}_{3} \mathrm{Si}: \mathrm{C}, 74.62 ; \mathrm{H}, 9.07$. Found: C, 74.72; H, 9.10.
(S)-6-0xo-11-((tert-butyldiphenylsilyl) oxy)-(4E,9Z)-tridecadienal (33). Dimethyl sulfoxide ($1.8 \mathrm{~g}, 23 \mathrm{mmol}$) was added slowly to a solution of oxalyl chloride ($1.45 \mathrm{~g}, 11 \mathrm{mmol}$) in 50 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$. After 20 min , a solution of alcohol $32(1.86 \mathrm{~g}, 4.0 \mathrm{mmol})$ in 6 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added slowly to the mixture, which was then stirred at $-78^{\circ} \mathrm{C}$ for $20 \mathrm{~min} . \mathrm{Et}_{3} \mathrm{~N}(5.05 \mathrm{~g}, 50 \mathrm{mmol})$ was added to the mixture slowly. The mixture was warmed to room temperature, treated with hexane (150 $\mathrm{mL})$, washed with $5 \% \mathrm{AcOH}(80 \mathrm{~mL})$ and brine $(2 \times 50 \mathrm{~mL})$, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Removal of the solvent under reduced pressure followed by flash chromatography of the residue on silica gel ($3: 1$ hexane-EtOAc) gave $1.77 \mathrm{~g}(96 \%)$ of 33 as a colorless oil: $[\alpha]_{\mathrm{D}}=+8.3^{\circ}\left(\mathrm{CHCl}_{3}, 0.8\right)$; ${ }^{1} \mathrm{H}$ NMR $9.79(\mathrm{t}, 1, J=1.1), 7.56-7.70(\mathrm{~m}, 4), 7.28-7.45(\mathrm{~m}, 6), 6.66$ (dt, $1, J=16.0,6.6), 5.99(\mathrm{dt}, 1, J=16.0,1.5), 5.43(\mathrm{ddt}, 1, J=11.0$, $9.0,1.5$), 5.16 (dtd, $1, J=11.0,7.4,0.9$), $4.36(\mathrm{~m}, 1), 2.63$ (br t, 2, J $=6.8), 2.51(\mathrm{brdt}, 2, J=6.6,6.8), 2.26(\mathrm{ddd}, 1, J=17.0,9.0,6.8), 2.17$ (ddd, $1, J=17.0,8.4,6.3$), $1.76-2.00(\mathrm{~m}, 2), 1.59$ (ddq, $1, J=13.4,5.6$, 7.6), 1.46 (ddq, $1, J=13.4,7.1,7.2$), $1.04(\mathrm{~s}, 9), 0.79(\mathrm{t}, 3, J=7.4)$; ${ }^{13} \mathrm{C}$ NMR 200.2, $199.0,144.1,136.0$ (2 C), 135.8 (2 C), 134.4, 134.3, 133.7, 130.7, 129.4, 129.3, 127.7, 127.4 (2 C), 127.2 (2 C), 70.5, 41.8, 39.7, 31.1, 26.9 (3 C), 24.5, 21.9, 19.3, 9.2; IR (neat) 3071, 3047, 3013, $2961,2931,2857,1727,1698,1674,1633,1472,1463,1428,1361,1110$, 703.

Ethyl (R)-3-((tert-Butyldiphenylsilyl)oxy)butyrate (35). tert-Butyldiphenylsilyl chloride $(8.1 \mathrm{~g}, 30.0 \mathrm{mmol})$ was added to a solution of ethyl R-(-)-3-hydroxybutyrate (34) ($3.0 \mathrm{~g}, 23.0 \mathrm{mmol}$) and imidazole (4.0 g , 60 mmol) in 20 mL of DMF at room temperature. After 3 h , the mixture was treated with hexane $(80 \mathrm{~mL})$, washed with $2 \% \mathrm{AcOH}(80 \mathrm{~mL})$ and water $(3 \times 60 \mathrm{~mL})$, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Removal of the solvent under reduced pressure followed by flash chromatography of the residue on silica gel (19:1 hexane-EtOAc) gave $8.1 \mathrm{~g}(95 \%)$ of 35 as a colorless oil: $[\alpha]_{\mathrm{D}}=-6.9^{\circ}\left(\mathrm{CHCl}_{3}, 1.0\right) ;{ }^{1} \mathrm{H}$ NMR 7.63-7.73 (m, 4), 7.32-7.45 (m, 6), 4.30 (ddq, $1, J=6.9,5.9,6.1$), 4.07 (dq, $1, J=10.9,7.3$), 4.03 (dq, $1, J=10.9,7.2$), 2.54 (dd, $1, J=14.6,6.9$), 2.38 (dd, $1, J=14.6,5.9$), 1.20 (dd, $3, J=7.2,7.3$), $1.11(\mathrm{~d}, 3, J=6.1), 1.03(\mathrm{~s}, 9) ;{ }^{13} \mathrm{C}$ NMR 171.4 , 135.8 (4 C), $134.3,133.9,129.6,129.5,127.5$ (2 C), 127.4 (2 C), 66.9, $60.2,44.7,26.9$ (3 C), 23.6, 19.2, 14.1; IR (neat) $3071,3048,2965,2931$, 2857, 1737, 1473, 1428, 1377, 1302, 1183, 1112, 1081, 997, 822, 702. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Si}$; $\mathrm{C}, 71.31 ; \mathrm{H}, 8.16$. Found: $\mathrm{C}, 71.06 ; \mathrm{H}$, 7.92 .
(R)-3-((tert-Butyldiphenylsilyl)oxy)butan-1-ol (36). A solution of DIBAL ($1 \mathrm{M}, 20 \mathrm{~mL}, 20 \mathrm{mmol}$) was added slowly to a solution of ester $35(3.1 \mathrm{~g}, 8.7 \mathrm{mmol})$ in 30 mL of hexane at $-78^{\circ} \mathrm{C}$. The reaction was stirred at $-20^{\circ} \mathrm{C}$ for 12 h and then quenched with $1: 2 \mathrm{MeOH}$-benzene $(3 \mathrm{~mL})$. The mixture was treated with hexane $(50 \mathrm{~mL})$ and saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (30 mL) at $0^{\circ} \mathrm{C}$. The solid formed was removed by filtration and washed with hexane (30 mL). The organic layer was separated from the aqueous layer, washed with water ($2 \times 40 \mathrm{~mL}$), and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Removal of the solvent under reduced pressure followed by flash chromatography of the residue on silica gel ($4: 1$ hexane-EtOAc) gave $1.8 \mathrm{~g}(66 \%)$ of alcohol 36 as a colorless oil: $[\alpha]_{\mathrm{D}}=-12.4^{\circ}\left(\mathrm{CHCl}_{3}\right.$, 2.2); ${ }^{1} \mathrm{H}$ NMR $7.60-7.75(\mathrm{~m}, 4), 7.30-7.48(\mathrm{~m}, 6), 4.11$ (ddq, $1, J=4.4$, $6.2,6.2$), 3.82 (ddd, $1, J=4.5,8.3,11.0$), 3.69 (ddd, $1, J=5.4,5.4,11.0$), 2.17 (br s, $1, \mathrm{OH}$), 1.81 (dddd, $1, J=4.4,5.4,8.3,14.2$), 1.65 (dddd, $1, J=6.2,4.5,5.4,14.2), 1.08(\mathrm{~d}, 3, J=6.2), 1.06(\mathrm{~s}, 9) ;{ }^{13} \mathrm{C}$ NMR 135.9 (2 C), 135.8 (2 C), 134.2, 133.7, 129.7, 129.6, 127.7 (2 C), 127.5 (2 C), $68.7,59.9,40.7,27.0(3 \mathrm{C}), 23.0,19.1$; IR (neat) $3353,3071,3048,2963$, 2931, 2857, 1472, 1427, 1378, 1111, 1026, 822, 701. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 73.12 ; \mathrm{H}, 8.59$. Found: $\mathrm{C}, 72.97 ; \mathrm{H}, 8.86$.
(R)-3-((tert-Butyldiphenylsilyl)oxy)-1-iodobutane (37). A solution of p-toluenesulfonyl chloride $(1.0 \mathrm{~g}, 5.5 \mathrm{mmol})$ in 5 mL of pyridine was slowly added to a solution of alcohol $36(1.6 \mathrm{~g}, 5.0 \mathrm{mmol})$ in 3 mL of pyridine at $-20^{\circ} \mathrm{C}$. After 12 h , the mixture was warmed to room temperature and treated with hexane (50 mL). The organic layer was washed with $2 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}(15 \mathrm{~mL})$ and water $(2 \times 20 \mathrm{~mL})$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Removal of the solvent under reduced pressure gave crude tosylate. A suspension of the crude tosylate and $\mathrm{NaI}(4.0 \mathrm{~g}, 26.7 \mathrm{mmol})$ in 50 mL of acetone was heated at reflux for 1 h and then cooled to room temperature. The solvent was removed under reduced pressure, and the mixture was treated with hexane (50 mL). The solid salt was removed by filtration and washed with hexane (20 mL). Removal of the solvent under reduced pressure followed by flash chromatography of the residue on silica gel ($49: 1$ hexane-EtOAc) gave 1.95 g (91%) of iodide 37 as a colorless oil: $[\alpha]_{\mathrm{D}}=+6.9^{\circ}\left(\mathrm{CHCl}_{3}, 2.5\right) ;{ }^{1} \mathrm{H}$ NMR 7.63-7.80 (m, 4), $7.32-7.50(\mathrm{~m}, 6), 3.91$ (ddq, $1, J=4.6,6.7,6.2$), $3.20(\mathrm{t}, 2, J=7.4$),
2.05 (ddt, $1, J=14.1,6.7,7.4), 1.92$ (ddt, $1, J=14.1,4.6,7.4$), 1.05 (s, 9), 1.04 (d, 3, J=6.2); ${ }^{13} \mathrm{C}$ NMR 135.8 (4 C), 134.4, 133.8, 129.7, $129.5,127.6$ (2 C), 127.4 (2 C), 69.7, 43.5, 27.0 (3 C), 22.9, 19.3, 2.4; IR (neat) 3069, 3048, 2963, 2929, 2856, 1472, 1427, 1377, 1127, 1111, 1058, 822, 740, 701. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{OSi}: \mathrm{C}, 54.79 ; \mathrm{H}, 6.21$. Found: C, 54.96; H, 6.50.
(R)-Methyl 7-((tert-Butyldiphenylsilyl)oxy)-3-oxooctanoate (38). A LDA solution (36 mmol) was prepared by adding n-butyllithium (2.5 M , $14.4 \mathrm{~mL}, 36 \mathrm{mmol}$) to a solution of diisopropylamine ($3.6 \mathrm{~g}, 36 \mathrm{mmol}$) in 50 mL of THF at $0^{\circ} \mathrm{C}$. Methyl acetoacetate ($1.84 \mathrm{~g}, 16 \mathrm{mmol}$) was added slowly to the LDA solution at $0^{\circ} \mathrm{C}$. After 1 h , iodide $37(5.6 \mathrm{~g}$, 12.8 mmol) was added slowly. The mixture was warmed to room temperature for 2 h, treated with hexane $(150 \mathrm{~mL})$, washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (50 mL) and brine ($2 \times 50 \mathrm{~mL}$), and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Removal of the solvent under reduced pressure followed by flash chromatography of the residue on silica gel ($9: 1$ hexane-EtOAc) gave $3.6 \mathrm{~g}(66 \%)$ of 38 as a colorless oil: $[\alpha]_{\mathrm{D}}=+17.4^{\circ}\left(\mathrm{CHCl}_{3}, 0.95\right) ;{ }^{1} \mathrm{H}$ NMR 7.55-7.76 (m, 4), 7.25-7.45 (m, 6), 3.83 (m, 1), $3.72(\mathrm{~s}, 3), 3.37$ $(\mathrm{s}, 2), 2.39(\mathrm{t}, 2, J=7.3), 1.59(\mathrm{~m}, 2), 1.43(\mathrm{~m}, 2), 1.05(\mathrm{~s}, 9), 1.06(\mathrm{~d}$, $3, J=6.1$) (data for the enol isomer: $4.92(\mathrm{~s}, 1), 3.84(\mathrm{~m}, 1), 2.08(\mathrm{t}$, $2, J=7.3$)); ${ }^{13} \mathrm{C}$ NMR 202.5, 167.6, 135.8 (4 C), 134.7, 134.3, 129.5, $129.4,127.5$ (2 C), 127.4 (2 C), 69.0, 52.3, 48.9, 42.9, 38.5, 27.0 (3 C), $23.1,19.3,19.1$ (data for the enol isomer: $178.8,173.0,135.8$ (4C), 134.7, 134.3, 129.5, 129.4, 127.5 (2 C), 127.4 (2 C), 88.7, 69.0, 51.0, $38.5,34.9,27.0$ (3 C), $21.8,19.3,19.2$); IR (neat) $3070,3047,2955$, 2931, 2857, 1750, 1718, 1653, 1472, 1428, 1376, 1318, 1240, 1135, 1111, 1036, 703. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{Si} ; \mathrm{C}, 70.38 ; \mathrm{H}, 8.03$. Found: C, 70.77; H, 8.35.

Methyl (2E,6E,11Z)- and (2Z,6E,11Z)-2-(5-((tert-Butyldiphenylsily))-oxy)hexanoyl)-8-oxopentadecatrienoate (39a,b). A solution of piperidine (25 mg) in 15 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added slowly to a solution of ester 38 ($0.92 \mathrm{~g}, 2.16 \mathrm{mmol}$) and aldehyde $33(0.93 \mathrm{~g}, 2.01 \mathrm{mmol})$ in 3 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$. The solution was stirred at $-20^{\circ} \mathrm{C}$ for 20 h , treated with hexane $(80 \mathrm{~mL})$, washed with 2% aqueous $\mathrm{AcOH}(10 \mathrm{~mL})$ and water $(2 \times 10 \mathrm{~mL})$, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Removal of the solvent under reduced pressure followed by flash chromatography of the residue on silica gel gave 350 mg (38%) of recovered ester 38 (19:1 hexane-EtOAc) followed by $1.12 \mathrm{~g}(64 \%, 96 \%$ based on recovered 38 and 86% based on recovered 33) of $39 \mathrm{a}, \mathrm{b}(9: 1$ hexane-EtOAc) as a $1: 1$ mixture, followed by $242 \mathrm{mg}(26 \%)$ of recovered 33 ($4: 1$ hexane-EtOAc). Anal. Calcd for $\mathrm{C}_{54} \mathrm{H}_{70} \mathrm{O}_{6} \mathrm{Si}_{2}$ (mixture of $39 \mathrm{a}, \mathrm{b}$): $\mathrm{C}, 74.44 ; \mathrm{H}, 8.10$. Found: $\mathrm{C}, 74.26$; H, 7.82 .

The two isomers $39 \mathrm{a}, \mathrm{b}$ can be separated by careful flash chromatography on silica gel (19:1 hexane-EtOAc).

Data for the $2 E, 6 E, 11 Z$-isomer (39a): ${ }^{1} \mathrm{H}$ NMR $7.59-7.70$ (m, 8), $7.27-7.44(\mathrm{~m}, 12), 6.85(\mathrm{t}, 1, J=7.6), 6.62(\mathrm{dt}, 1, J=15.9,6.4), 5.99$ (br d, $1, J=15.9$), 5.41 (br dd, $1, J=10.9,9.2$), 5.16 (br dt, $1, J=10.9$, 7.3), 4.37 (br dt, $1, J=9.2,6.2$), $3.84(\mathrm{~m}, 1), 3.75(\mathrm{~s}, 3), 2.53(\mathrm{t}, 2, J$ $=7.0), 2.10-2.43(\mathrm{~m}, 6), 1.88(\mathrm{~m}, 2), 1.62(\mathrm{~m}, 2), 1.57(\mathrm{~m}, 1), 1.45(\mathrm{~m}$, 2), $1.42(\mathrm{~m}, 1), 1.05(\mathrm{~d}, 3, J=6.2), 1.04(\mathrm{~s}, 9), 1.03(\mathrm{~s}, 9), 0.79(\mathrm{t}, 3$, $J=7.4$); ${ }^{13} \mathrm{C}$ NMR 203.0, 199.0, 164.7, 146.3, 144.1, 136.0, 135.8 (8 C), 134.7, 134.5, 134.4 (2 C), 133.7, 130.9, 129.45 (2 C), 129.42, 129.3, 127.7, 127.48 (2 C), 127.43 (2 C), 127.39 (2 C), 127.26 (2 C), 70.5, 69.2, 52.2, 43.3, 39.7, 38.7, 31.1 (2 C), 27.8, 27.00 (3 C), 26.95 (3 C), 23.1, 21.9, 19.4, 19.28, 19.24, 9.3; IR (neat) $3070,3048,3013,2998,2960$, 2930, 2857, 1715, 1700, 1678, 1632, 1472, 1462, 1428, 1376, 1362, 1252, 1111, 1079, 1047, 822, 741, 703.

Data for the $2 Z, 6 E, 11 Z$-isomer (39b): ${ }^{1} \mathrm{H}$ NMR $7.58-7.68$ (m, 8), $7.26-7.44(\mathrm{~m}, 12), 6.71(\mathrm{t}, 1, J=7.4), 6.64(\mathrm{dt}, 1, J=15.9,6.4), 6.00$ (dt, $1, J=15.9,1.5$), 5.43 (ddt, $1, J=10.9,9.0,1.5$), 5.17 (dtd, $1, J=$ $10.9,7.3,1.0$), 4.37 (br dt, $1, J=9.0,6.2$), $3.85(\mathrm{~m}, 1), 3.80(\mathrm{~s}, 3), 2.51$ $(\mathrm{t}, 2, J=7.2), 2.45(\mathrm{t}, 2, J=7.5), 2.37(\mathrm{~m}, 2), 2.22(\mathrm{~m}, 2), 1.89(\mathrm{~m}$, $2), 1.61(\mathrm{~m}, 2), 1.59(\mathrm{~m}, 1), 1.46(\mathrm{~m}, 2), 1.42(\mathrm{~m}, 1), 1.06(\mathrm{~d}, 3, J=6.2)$, $1.05(\mathrm{~s}, 9), 1.04(\mathrm{~s}, 9), 0.80(\mathrm{t}, 3, J=7.4) ;{ }^{13} \mathrm{C}$ NMR 198.9, 197.1, 166.5, 145.4, 144.1, 135.9, 135.8 (8 C), 134.7, 134.4, 134.3 (2 C), 133.7, 130.8, 129.44 (2 C), 129.38, 129.3, 127.7, 127.46 (2 C), 127.41 (2 C), 127.36 (2 C), 127.23 (2 C), $70.5,69.1,52.1,39.7,39.3,38.6,31.1,30.9,28.3$, 26.98 (3 C), 26.92 (3 C), 23.0, 21.9, 19.5, 19.25, 19.20, 9.2; IR (neat) 3070, 3048, 3013, 2998, 2960, 2931, 2858, 1732, 1698, 1678, 1632, 1472, $1462,1428,1376,1362,1214,1110,1079,1045,822,741,703$. The stereochemistry was assigned on the basis of the ${ }^{13} \mathrm{C}$ NMR absorptions of the carbonyl carbons. ${ }^{12}$

Methyl (4a $\left.\alpha^{*}, 7 \beta^{*}\right)$ - and (4a $\left.\alpha^{*}, 7 \alpha^{*}\right)$-7-((7S)-((tert-Butyldiphenyl-silyl)oxy)-2-oxo-(5Z)-nonenyl)-3-((4R)-((tert-butyldiphenylsilyl)oxy)-pentyl)-4a,5,6,7-tetrahydro-1-me thoxypyrrolo[1,2-c]pyrimidine-4-carboxylate (40 and 41). A suspension of $39(200 \mathrm{mg}, 0.23 \mathrm{mmol}$),
O-methylisoureido sulfate ($300 \mathrm{mg}, 1.22 \mathrm{mmol}$), and diisopropylethylamine ($70 \mathrm{mg}, 0.54 \mathrm{mmol}$) in 6 mL of DMSO was stirred at $80^{\circ} \mathrm{C}$ for 1.5 h , and then cooled to room temperature. The mixture was treated with $7: 3$ hexane-EtOAc (10 mL) and $5 \% \mathrm{NaHCO}_{3}$ solution (5 mL). After the organic layer was separated, the aqueous layer was extracted with 7:3 hexane-EtOAc $(2 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine $(10 \mathrm{~mL})$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Removal of the solvent under reduced pressure followed by flash chromatography of the residue on silica gel ($9: 1$ hexane-EtOAc) gave 110 mg (52%) of 40 and 41 as a $4: 1$ mixture of isomers, which can be separated by careful chromatography on silica gel ($15: 1$ hexane-EtOAc). Anal. Calcd for $\mathrm{C}_{56} \mathrm{H}_{74} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Si}_{2}$: C, $72.53 ; \mathrm{H}, 8.04 ; \mathrm{N}, 3.02$. Found: C, $72.59 ; \mathrm{H}, 7.69$; N, 2.94 .

Data for 40: ${ }^{1} \mathrm{H}$ NMR $7.56-7.75(\mathrm{~m}, 8), 7.28-7.44(\mathrm{~m}, 12), 5.432$ (br dd, $1 \times 0.5, J=11.0,9.0$), 5.427 (br dd, $1 \times 0.5, J=11.0,9.0$), 5.12 (br dt, $1, J=11.0,8.0$), $4.49(\mathrm{dd}, 1 \times 0.5, J=10.5,4.5), 4.47$ (dd, 1 $\times 0.5, J=10.5,4.5), 4.25-4.40(\mathrm{~m}, 2), 3.88(\mathrm{~m}, 1), 3.730(\mathrm{~s}, 3 \times 0.5)$, $3.715(\mathrm{~s}, 3 \times 0.5), 3.648(\mathrm{~s}, 3 \times 0.5), 3.644(\mathrm{~s}, 3 \times 0.5), 2.71(\mathrm{dd}, 1, J$ $=16.5,4.4), 2.62(\mathrm{~m}, 1), 2.35-2.50(\mathrm{~m}, 2), 2.36(\mathrm{dd}, 1 \times 0.5, J=16.5$, $3.4), 2.34(\mathrm{dd}, 1 \times 0.5, J=16.5,3.3), 1.95-2.20(\mathrm{~m}, 3), 1.70-1.95(\mathrm{~m}$, 2), 1.34-1.70 (m, 8), $1.05(\mathrm{~d}, 3, J=6.0), 1.04(\mathrm{~s}, 9), 1.03(\mathrm{~s}, 9), 0.79$ ($\mathrm{t}, 3, J=7.4$); ${ }^{13} \mathrm{C}$ NMR 207.79 (0.5 C), 207.77 (0.5 C), 167.3, 161.62 (0.5 C), 161.60 (0.5 C), $156.9,136.0$ (2 C), 135.8 (6 C), 135.0, 134.7, $134.4,134.3,133.9,129.5,129.34,129.31,129.27,127.45$ (2 C), 127.37 (3 C), 127.30 (2 C), 127.27 (2 C), 101.4, 70.5, 69.71 (0.5 C), 69.65 (0.5 C), $58.7,54.6,54.1,50.5,48.0,42.83$ (0.5 C), 42.78 (0.5 C), 39.31 (0.5 C), 39.27 (0.5 C), $35.5,35.3,31.1,28.7,27.0$ (3 C), 26.9 (3 C), 24.0 (0.5 C), 23.9 (0.5 C), 23.13 (0.5 C), 23.09 (0.5 C), $21.6,19.3$ (2 C), 9.3 ; IR (neat) $3070,3048,2960,2931,2857,1713,1682,1613,1527,1473$, $1428,1402,1258,1240,1111,1026,1006,822,740,703$.

Data for 41: ${ }^{1} \mathrm{H}$ NMR $7.56-7.73$ (m, 8), 7.27-7.45 (m, 12), 5.41 (br $\mathrm{dd}, 1, J=11.0,9.0), 5.10(\mathrm{br} \mathrm{dt}, 1, J=11.0,7.4), 4.26-4.41(\mathrm{~m}, 2), 4.11$ (ddd, $1, J=9.1,8.0,3.0), 3.87(\mathrm{~m}, 1), 3.77(\mathrm{~s}, 3 \times 0.5), 3.75(\mathrm{~s}, 3 \times$ $0.5), 3.66(\mathrm{~s}, 3 \times 0.5), 3.64(\mathrm{~s}, 3 \times 0.5), 2.68(\mathrm{dd}, 1, J=16.9,3.0), 2.57$ $(\mathrm{m}, 1), 2.44(\mathrm{~m}, 2), 1.36-2.30(\mathrm{~m}, 14), 1.05(\mathrm{~d}, 3, J=6.0), 1.04(\mathrm{~s}, 9)$, $1.03(\mathrm{~s}, 9), 0.79(\mathrm{t}, 3, J=7.3) ;{ }^{13} \mathrm{C}$ NMR 202.2, 167.0, 163.2, 156.9, 136.0 (2 C), 135.8 (6 C), 134.4, 134.3, 134.0, 133.88, 133.82, 129.5 (2 C), 129.3 (2 C), 127.45 (3 C), 127.39 (2 C), 127.32 (2 C), 127.26 (2 C), $103.3,70.5,69.7$ (0.5 C), 69.6 (0.5 C), 59.5, 54.1, 52.24 (0.5 C), 52.20 (0.5 C), $50.5,47.7,42.6,39.4$ (0.5 C), 39.3 (0.5 C), 34.90 (0.5 C), 34.87 (0.5 C), $31.10,30.67$ (0.5 C), 30.64 (0.5 C), $30.1,27.0$ (3 C), 26.9 (3 C), 24.3 (0.5 C), 24.0 (0.5 C), 23.13 (0.5 C), 23.06 (0.5 C), 21.58 (0.5 C), 21.55 (0.5 C), 19.28, 19.23, 9.25; IR (neat) $3070,3045,2958,2931$, $2856,1715,1684,1602,1522,1472,1428,1400,1256,1245,1111,1028$, 1003, 822, 740, 702.
Methyl [2aR-[2a $\alpha, 7 \alpha, 8 \mathrm{a} \alpha]]-$ and [2aS [2a $\alpha, 7 \alpha, 8 \mathrm{aa} \alpha]]-7-((\mathrm{S})-5-(($ tert -Butyldiphenylsilyl)oxy)-(3Z)-heptenyl)-4-((R)-4-((tert-butyldiphenylsilyl) oxy) pentyl)-1,2,6,7,8,8a-hexahydro-7-hydroxy-2aH-5,6,8b-tri-azaacenaphthylene-3-carboxylate Hydrochloride (42 and 43). A solution of the mixture of 40 and $41(100 \mathrm{mg})$ in 5 mL of tert-butyl alcohol was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and transferred to a resealable tube, and $\mathrm{NH}_{4} \mathrm{OAc}$ (50 mg) was added. The solution was saturated with anhydrous NH_{3} at 5 ${ }^{\circ} \mathrm{C}$ for 5 min and then was sealed and kept at $60^{\circ} \mathrm{C}$ for 40 h . The solution was cooled to room temperature and treated with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. The solid salt was removed by filtration and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was concentrated under reduced pressure, and the residue was taken up in saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (5 mL) and brine (10 mL). The aqueous solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$, and the combined organic layers weredried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Removal of the solvent under reduced pressure followed by flash chromatography of the residue on silica gel ($2: 3$ hexane-EtOAc to EtOAc) gave 74 mg (72%) of a $1: 1$ mixture of 42 and 43 as a colorless oil: ${ }^{1} \mathrm{H}$ NMR 7.56-7.72 (m, 8), 7.24-7.45 (m, 12), 5.43 (br t, $1, J=9.9), 5.19(\mathrm{~m}, 1), 4.44(\mathrm{dd}, 1 \times 0.5, J=9.8,5.8)$, 4.43 (dd, $1 \times 0.5, J=9.8,5.8), 4.33(\mathrm{~m}, 1), 3.79-3.93(\mathrm{~m}, 2), 3.68(\mathrm{~s}$, $3 \times 0.5), 3.67(\mathrm{~s}, 3 \times 0.5), 2.40-2.73(\mathrm{~m}, 3), 2.13(\mathrm{~m}, 1), 2.04(\mathrm{~m}, 1)$, $1.86(\mathrm{~m}, 1), 1.35-1.78(\mathrm{~m}, 12), 1.03(\mathrm{~d}, 3, J=6.0), 1.02(\mathrm{~s}, 18), 0.78$ ($\mathrm{t}, 3, J=7.3$); ${ }^{13} \mathrm{C}$ NMR 165.1, $147.5,145.39$ (0.5 C), 145.31 (0.5 C), 136.0 (2 C), 135.8 (6 C), $134.8,134.46,134.34,133.70,133.65,129.4$ (2 C), 129.3 (2 C), $127.8,127.46$ (4 C), 127.40 (4 C), 100.83 (0.5 C), 100.80 (0.5 C), 79.66 (0.5 C), 79.62 (0.5 C), 70.6 (0.5 C), 70.5 (0.5 C), 69.2 (0.5 C), 69.1 (0.5 C), 56.7, 51.43, 51.39, 39.9, 38.9 (0.5 C), 38.7 (0.5 C), 36.4 (0.5 C), 36.2 (0.5 C), 32.9, 31.1, $41.0,27.0$ (3 C), 26.9 (3 C), 26.0, 24.0 (0.5 C), 23.8 (0.5 C), 23.0 (0.5 C), 22.9 (0.5 C), 21.70 (0.5 C), $21.57(0.5 \mathrm{C}), 19.26,19.22,9.36(0.5 \mathrm{C}), 9.27$ (0.5 C); IR (neat) 3233, 3070, 2957, 2931, 2856, 1715, 1682, 1580, 1428, 1266, 1188, 1110,
702. Anal. Calcd for $\mathrm{C}_{55} \mathrm{H}_{74} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{ClSi}_{2}: \mathrm{C}, 69.62 ; \mathrm{H}, 7.86 ; \mathrm{N}, 4.43$. Found: C, 69.82; H, 7.31; N, 4.47.

Methyl [2S,7S, $\left.2^{\prime} a S, 7^{\prime} R, 8^{\prime} S, 8^{\prime}{ }^{\prime} R, 6^{\prime \prime} R\right]$ - and [2S,7S, $2^{\prime} a S, 7^{\prime} R, 8^{\prime} R$, 8^{\prime} aR, $\left.6^{\prime \prime} R\right]$-7-Ethyl-1 $1^{\prime}, 2^{\prime}, 2^{\prime}$ a, $3^{\prime}, 3^{\prime \prime}, 4,4^{\prime \prime}, 5^{\prime \prime}, 6^{\prime \prime}, 7,8^{\prime}, 8^{\prime}$ a-dodeca hydro-6 ${ }^{\prime \prime}$ -methyldispiro[oxepin-2(3H), $4^{\prime}-[4 H-5,6,8 b]$ triazaacenaphthylene- $7^{\prime}\left(5^{\prime} H\right), 2^{\prime \prime}$ [2 H$]$ pyran] -8^{\prime}-carboxylate (9 and 45). A solution of hydrogen fluoride $(50 \%, 1 \mathrm{~mL})$ was added slowly to a stirred solution of 42 and $43(50 \mathrm{mg})$ in 2 mL of acetonitrile at $-40^{\circ} \mathrm{C}$. The mixture was stirred at $-30^{\circ} \mathrm{C}$ for $3 \mathrm{~d},{ }^{20}$ and a mixture of saturated NaHCO_{3} solution (5 mL) and saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (2 mL) was slowly added to the reaction at -30 ${ }^{\circ} \mathrm{C}$, and water (5 mL) was added at $0^{\circ} \mathrm{C}$. The mixture was extracted with EtOAc $(3 \times 15 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The combined organic layers were washed with saturated NaHCO_{3} solution (5 mL) and saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (5 mL) at $0{ }^{\circ} \mathrm{C}$ and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Removal of the solvent under reduced pressure followed by flash chromatography of the residue on silica gel ($9: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$) gave 21.3 mg of a polar mixture, possibly containing tricyclic diols.

A solution of this mixture and $\mathrm{Et}_{3} \mathrm{~N}(20 \mathrm{mg})$ in 3 mL of MeOH was heated at $60^{\circ} \mathrm{C}$ for 20 h . Removal of the solvent under reduced pressure followed by flash chromatography of the residue on silica gel gave 12.3 mg of a mixture rich in 9 and 45 ($30: 1$ to $19: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$) followed by $8.6 \mathrm{mg}\left(9: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}\right)$ of more polar tricyclic and tetracyclic material, which was heated in MeOH containing $\mathrm{Et}_{3} \mathrm{~N}$ again to give another 2.1 mg of 9 and 45 after chromatography. The combined fractions of 9 and 45 (14.4 mg) contain about 65% (by ${ }^{1} \mathrm{H}$ NMR) of a 1.3:1 mixture of 9 and 45 (39% yield assuming 65% pure, 78% based on 42). Flash chromatography of this mixture on silica gel ($40: 1 \mathrm{EtOAc}-\mathrm{MeOH}$) gave 4.7 mg of 80% pure 9 and 4.0 mg of 85% pure 45 .

Much purer 9 (99%) and 45 (96%) were obtained by heating the mixture of 9 and $45(12.0 \mathrm{mg})$ in 4 mL of $1: 1 \mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}$ containing $E t_{3} \mathrm{~N}(15 \mathrm{mg})$ for 16 h at $60^{\circ} \mathrm{C}$ to give, after flash chromatography on silica gel, 3.0 mg of recovered 9 and 45 (97:3 EtOAc-MeOH) followed by 5.8 mg of pure 44 (92:8 EtOAc-MeOH). Recyclization of 44 in 3 mL of MeOH containing $\mathrm{Et}_{3} \mathrm{~N}(15 \mathrm{mg})$ followed by flash chromatography on silica gel ($97: 3 \mathrm{EtOAc}-\mathrm{MeOH}$) gave 4.9 mg of a $1.3: 1$ mixture of 9 and 45 , which were separated by careful flash chromatography on silica gel (39:1 EtOAc-MeOH) to give 2.5 mg of 99% pure 9 followed by 1.2 mg of a mixture of 9 and 45 , and then 1.0 mg of 96% pure 45 .

A solution of 1.0 mg of $\mathbf{4 5}$ was heated with $\mathrm{Et}_{3} \mathrm{~N}$ in MeOH for 20 h . The ${ }^{1} \mathrm{H}$ NMR spectrum indicated that a 7:5:8 mixture of 44,9 , and 45 was formed.

Data for 44: ${ }^{1} \mathrm{H}$ NMR $5.69(\mathrm{ddt}, 1, J=11.0,7.5,2.1), 5.48(\mathrm{dt}, 1$, $J=11.0,2.0$), $4.53(\mathrm{dd}, 1, J=10.0,6.0), 4.47(\mathrm{~m}, 1), 4.00(\mathrm{~m}, 1), 3.95$ (m, 1), $3.76(\mathrm{~s}, 3), 2.81(\mathrm{~m}, 1), 2.67(\mathrm{dd}, 1, J=12.9,5.3), 2.53-2.67(\mathrm{~m}$, 2), $2.34(\mathrm{~m}, 1), 2.10-2.30(\mathrm{~m}, 2) ; 1.96$ (br dd, $1, J=13.9,5.7), 1.40-1.90$ ($\mathrm{m}, 9$), 1.42 ($\mathrm{t}, 1, J=14.1$), 1.21 (d, $3, J=6.2$), $0.84(\mathrm{t}, 3, J=7.3$); ${ }^{13}$ C NMR $165.2,148.1,146,0,133.1,129.9,100.8,84.0,71.3,56.9,52.6$, $51.6,37.8,37.2,36.8,33.3,30.13,20.09,29.1,25.9,24.2,23.5,23.4$, 10.1 .

Data for 9: $[\alpha]_{\mathrm{D}}=+5.0^{\circ}\left(\mathrm{CHCl}_{3}, 0.13\right) ;{ }^{1} \mathrm{H}$ NMR $9.93(\mathrm{brs}, 1, \mathrm{NH})$, 9.72 (br s, 1, NH), 5.67 (ddt, $1, J=11.2,7.8,2.2$), 5.48 (dt, $1, J=11.2$, 2.0), $4.52(\mathrm{~m}, 1), 4.29(\mathrm{dt}, 1, J=9.8,5.0), 3.98(\mathrm{~m}, 2), 3.70(\mathrm{~s}, 3), 2.97$ (d, $1, J=5.2$), $2.56(\mathrm{dd}, 1, J=12.3,6.0), 2.52(\mathrm{brt}, 1, J=14.1)$, 2.10-2.42 (m, 6), 1.96 (br dd, $1, J=14.1,5.6$), $1.40-1.88$ (m, 7), 1.42 ($\mathrm{t}, 1, J=12.3$), $1.20(\mathrm{~m}, 1), 1.06(\mathrm{~d}, 3, J=6.1), 0.84(\mathrm{t}, 3, J=7.2)$; ${ }^{13} \mathrm{C}$ NMR $168.6,148.8,133.7,129.8,83.6,80.7,71.0,67.3,53.9,52.1$, $51.7,49.7,37.0$ (2 C), 32.0 (2 C), 30.6, 29.1, 26.8, 23.5, 21.4, 18.3, 10.0; IR (neat) $3230,3106,2968,2934,2872,1735,1659,1614,1437,1204$, 1165, 1089, 1016, 924, 728.

A 2D-NMR ROESY experiment on 9 showed intense cross peaks between H_{1} and $\mathrm{H}_{19}, \mathrm{H}_{3}$ and $\mathrm{H}_{7}-\alpha(\delta 2.52), \mathrm{H}_{1}$ and H_{13}, and H_{10} and H_{13}, which are identical to those observed in the ROESY spectra of ptilomycalin A. ${ }^{1}$

Data for 45: $[\alpha]_{D}=+23.0^{\circ}\left(\mathrm{CHCl}_{3}, 0.10\right) ;{ }^{1} \mathrm{H}$ NMR 10.09 (br s, 1 , NH), $9.81(\mathrm{br} \mathrm{s}, 1, \mathrm{NH}), 5.66(\mathrm{~m}, 1), 5.48(\mathrm{dt}, 1, J=11.0,1.9), 4.49$ ($\mathrm{m}, 1$), $4.33(\mathrm{dt}, 1, J=11.6,7.1), 4.09(\mathrm{~m}, 1), 3.90(\mathrm{~m}, 1), 3.79(\mathrm{~s}, 3)$, $2.57(\mathrm{dd}, 1, J=12.6,4.6), 2.51(\mathrm{brt}, 1, J=14.0), 2.42(\mathrm{~d}, 1, J=11.5)$, $2.10-2.45(\mathrm{~m}, 6), 1.92(\mathrm{br} \mathrm{dd}, 1, J=14.0,5.1), 1.40-1.85(\mathrm{~m}, 7), 1.32$ ($\mathrm{t}, 1, J=12.6$), $1.10(\mathrm{~m}, 1), 1.04(\mathrm{~d}, 3, J=6.1), 0.83(\mathrm{t}, 3, J=7.2)$; ${ }^{13} \mathrm{C}$ NMR $168.2,147.9,133.6,129.7,83.4,81.5,71.0,67.8,53.3,53.2$, $53.0,52.4,37.2,37.0,32.0,31.2,29.8,29.6,29.1,23.5,21.3,18.5,10.2$; IR (neat) $3229,3118,2967,2933,2874,1737,1660,1613,1438,1201$, 1094, 1018, 727.

Acknowledgment. We are grateful to the donors of the Petroleum Research Fund, administered by the American Chemical Society, and the National Institutes of Health for financial support. We thank Prof. Thomas Pochapsky, Mr. Anping Wang, and Ms. Sophie Kazanis for carrying out the ROESY experiments.

[^0]: Abstract published in Advance ACS Abstracts, December 15, 1993. (1) (a) Kashman, Y.; Hirsh, S.; McConnell, O. J.; Ohtani, I.; Kusumi, T.; Kakisawa, H. J. Am. Chem. Soc. 1989, 111, 8925 . (b) Ohtani, I.; Kusumi, T.; Hakisawa, H. Tetrahedron Lett. 1992, 33, 2525. (c) Ohtani, I.; Kusumi, T.; Hakisawa, H.; Kashman, Y.; Hirsh, S. J. Am. Chem. Soc. 1992, 114, 8472.
 (2) (a) Jares-Erijman, E. A.; Sakai, R.; Rinehart, K. L. J. Org. Chem. 1991, 56, 5712. (b) Jares-Erijman, E. A.; Sakal, R.; Ingrum, A.; Carney, J. R.; Rinehart, K. L. Abstracts of Papers, 205th National Meeting of the American Chemical Society, Denver, CO; American Chemical Soclety: Washington, DC, 1993; ORGN 250. (c) Jares-Erijman, E. A.; Ingrum, A. L.; Carney, J. R.; Rinehart, K. L.; Sakai, R. J. Org. Chem. 1993, $58,4805$. (d) Berlinck, R. G. S.; Braekman, J. C.; Dalzoe, D.; Bruno, I.; Riccio, R.; Ferri, S.; Spampinato, S.; Speroni, E. J. Nat. Prod. 1993, 56, 1007.
 (3) Harbour, G. C.; Tymiak, A. A.; Rinehart, K. L., Jr.; Shaw, P. D.; Hughes, R. G., Jr.; Mizsak, S. A.; Coats, J. H.; Zurenko, G. E.; Li, L. H.; Kuentzel, S. L. J. Am. Chem. Soc. 1981, 103, 5604.
 (4) Snider, B. B.; Faith, W. C. Tetrahedron Lett. 1983, 24, 861; J. Am. Chem. Soc. 1984, 106, 1443.

[^1]: (5) (a) Berlinck, R. G. S.; Braekman, J. C.; Daloze, D.; Hallenga, K.; Ottinger, R.; Bruno, I.; Riccio, R. Tetrahedron Lett. 1990, 31, 6531. (b) Berlinck, R. G. S.; Braekman, J.C.; Daloze, D.; Bruno, 1.; Riccio, R.; Rogeau, D.; Amade, P. J. Nat. Prod. 1992, 55, 528.
 (6) (a) Snider, B. B.; Shi, Z. J. Org. Chem. 1992, 57, 2526. (b) Snider, B. B.; Shi, Z. J. Org. Chem. 1993, 58, 3828. Our synthetic work led to a revision of the stereochemistry at the aminal center and the length of the side chain of crambine B.

[^2]: (7) Snider, B. B.; Shi, Z. Tetrahedron Lett. 1993, 34, 2099.
 (8) For an alternate approach to ptilomycalin A, see: Overman, L. E.; Rabinowitz, M. H. J. Org. Chem. 1993, 58, 3235.
 (9) Marshall, J. A.; Deholl, B. S. J. Org. Chem. 1986, 51, 863.

[^3]: (10) Jones, G. Org. React. 1967, 15, 204.
 (11) Weiler, L.; Huckin, S. N. J. Am. Chem. Soc. 1974, 96, 1082.
 (12) Bogdanov, V.S.; Ugrak, B. I.; Krasnaya, Zh. A.; Stytsenko, T. S. Izv. Akad. Nauk SSSR, Ser. Khim. 1990, 356; Bull. Acad. Sci. USSR, Chem. Ser. 1990, 298.
 (13) (a) O'Reilly, B. C.; Atwal, K. S. Heterocycles 1987, 26, 1185, 1189. (b) Atwal, K. S.; Rovnyak, G. C.; O'Reilly, B. C.; Schwartz, J. J. Org, Chem. 1989, 54, 5898.
 (14) (a) Bothner-By, A. A.; Stephens, R. L.; Lee, J.-M.; Warren, C. D.; Jeanloz, R. W. J. Am. Chem. Soc. 1984, 106, 811. Bax, A.; Davis, D. G. J. Magn. Reson. 1985, 63,207. Two-dimensional phase-sensitive ROESY spectra were obtained on a $500-\mathrm{MHz}$ Bruker AMX- 500 spectrometer. Data workup was performed using D. Hare's FELIX programoperating on a Silicon Graphics Iris Workstation. Spin-locking periods of 100 and 200 ms were used with a spin-lock field of $2.5 \mathrm{kHz}(\pi / 2=100 \mu \mathrm{~s})$. (b) Molecular mechanics calculations were carried out using MODEL version KS 2.96 obtained from Prof. Kosta Steliou, University of Montreal.

[^4]: (15) (a) Midland, M. M.; Tramontano, A.; Kazubski, A.; Graham, R. S.; Tsai, D. J. S.; Cardin, D. B. Tetrahedron 1984, 40, 1371. (b) Brown, H. C.; Pai, G. G. J. Org. Chem. 1985, 50, 1384.
 (16) Dale, J. A.; Dull, D. L.; Mosher, H. S. J. Org. Chem. 1969, 34, 2543.
 (17) Hanessian, S.; Lavallee, P. Can. J. Chem. 1975, 53, 2975.
 (18) Yoon, N. M.; Gyoung, Y. S. J. Org. Chem. 1985, 50, 2443.
 (19) (a) Gerlach, H.; Oertle, K.; Thalman, A. Helv. Chim. Acta 1976, 59, 755. (b) Voss, G.; Gerlach, H. Helv. Chim. Acta 1983, 66, 2294.

[^5]: (20) Shibasaki, M.; Ogawa, Y.; Nunomoto, M. J. Org. Chem. 1986, 51, 1625.
 (21) Attempted deprotection of 42 and 43 with tetrabutylammonium fluoride in THF at room temperature resulted in $\approx 50 \%$ decomposition with less than 20% deprotection. Attempted deprotection with a $1: 19$ mixture of 50% aqueous hydrofluoric acid and acetonitrile at room temperature resulted in cis/trans isomerization of the double bond and decomposition.
 (22) We thank Dr. Kenneth L. Rinehart, University of Illinois, for carrying out the bloassays.

